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MEI Structured Mathematics

Mathematics is not only a beautiful and exciting subject in its own right but also
one that underpins many other branches of learning. It is consequently

fundamental to the success of a modern economy.

MEI Structured Mathematics is designed to increase substantially the number of
people taking the subject post-GCSE, by making it accessible, interesting and
relevant to a wide range of students.

It is a credit accumulation scheme based on 45 hour units which may be taken
individually or aggregated to give Advanced Subsidiary (AS) and Advanced GCE
(A Level) qualifications in Mathematics and Further Mathematics. The units
may also be used to obtain credit towards other types of qualification.

The course is examined by OCR (previously the Oxford and Cambridge Schools
Examination Board) with examinations held in January and June each year.

This is one of the series of books written to support the course. Its position
within the whole scheme can be seen in the diagram above.
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Mathematics in Education and Industry (MEI) is an independent curriculum

development body which aims to promote links between education and industry in

mathematics. MEI produce relevant examination specifications at GCSE, AS and A

Level (including Further Mathematics) and for Free Standing Mathematics

Qualifications (FSMQs); these are examined by OCR.

In partnership with Hodder Murray, MEI are responsible for three major series of

textbooks: Formula One Maths for Key Stage 3, Hodder Mathematics for GCSE

and the MEI Structured Mathematics series, including this book, for AS and A

Level

As well as textbooks, MEI take a leading role in the development of on-line

resources to support mathematics. The books in this series are complemented by a

major MEI website providing full solutions to the exercises, extra questions

including on-line multiple choice tests, interactive demonstrations of the

mathematics, schemes of work, and much more.

In recent years MEI have worked hard to promote Further Mathematics and, in

conjunction with the DfES, they are now establishing the national network of

Further Mathematics Centres.

MEI are committed to supporting the professional development of teachers. In

addition to a programme of Continual Professional Development, MEI, in

partnership with several universities, co-ordinate the Teaching Advanced

Mathematics programme, a course designed to give teachers the skills and

confidence to teach A Level mathematics successfully.

Much of the work of MEI is supported by the Gatsby Charitable Foundation.

MEI is a registered charity and a charitable company.

MEI's website and email addresses are www.mei.org.uk and office@mei.org.uk.
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Introduction

This book covers the MEI Structured Mathematics A2 unit (or module) FP2,
Further Methods for Advanced Mathematics. This unit is a requirement for an A

level in Further Mathematics in this specification. The material in this book is
also relevant to other Further Mathematics specifications and so it will be found
useful by all students at this level.

Throughout the series the emphasis is on understanding rather than mere

routine calculations, but the various exercises do nonetheless provide plenty of
scope for practising basic techniques. Extensive on-line support is available via
the MEI website, www.mei.org.uk.

This is the third edition of this series. Much of the content of this book was

previously covered in Pure Mathematics 5 but it has now been reorganised to
meet the requirements of the new specification being first examined in January
2006.

The final chapter, Investigation of curves, is, however, completely new. This

exciting topic replaces the previous syllabus item of conies; it is based on the
assumption that the reader has a graphic calculator, and looks at the properties
of curves in a much more general way. Because of the many diagrams this
chapter looks rather long, but the actual work involved is comparable with that
in the other chapters.

I would like to thank all those who have worked on this book, particularly David
Martin for preparing this new edition and Bernard Murphy for his creativity in
writing the final chapter.

Readers who are interested in a possible career in mathematics may wish to visit

the website www.mathscareers.org.uk for more information.

Roger Porkess
Series Editor
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Key to symbols in this book

This symbol means that you may want to discuss a point with your
teacher. If you are working on your own there are answers in the back of

the book. It is important, however, that you have a go at answering the
questions before looking up the answers if you are to understand the
mathematics fully.

This is a warning sign. It is used where a common mistake,
misunderstanding or tricky point is being described.

This is the ICT icon. It indicates where you should use a graphic
calculator or a computer.

This symbol and a dotted line down the right-hand side of the page

indicates material which is beyond the criteria for the unit but which is
included for completeness.

Harder questions are indicated with stars. Many of these go beyond the
usual examination standard.
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Calculus

The moving power of mathematical invention is not reasoning but
imagination.

Augustus De Morgan, 1806-1871

What is the mean voltage?

In this chapter you will build on the following techniques that you learnt previously.

Differentiation

• The product rule:

The quotient rule:

• The chain rule:

Integration

• By substitution, as in

In a simple example like this you may well be able to go straight to the result,

mentally checking that differentiating -^ (3x — 2)6 + c gives (3x — 2)5,

without having to make a substitution. This is described as cby inspection'.

One important example of this is when integrating a fraction in which the

numerator is the derivative of the denominator;

1
By parts, using the formula

11



EXAMPLE 1.1

SOLUTION

Notice that Example 1.1 involved integrating the product of the function, 2x, and
the 'function of a function', cos (x + 1). It is because 2x is the derivative of
(x2 + 1) that the substitution u = x2 + 1 is useful. Example 1.2 is of a similar type.

EXAMPLE 1.2 Find J cos x sin2 x dx.

SOLUTION

This integral is the product of the function, cos x, and the 'function of a
function', sin2 x = (sinx)2. Here cosx is the derivative of sin x, so the
substitution u = sin x should be helpful.

Differentiating.

Therefore 

With practice you will
learn how to work out this kind

of integral by inspection.
But if in doubt it is best to

write down the whole
substitution process.

Differentiation and integration of trigonometric functions

For example

Again you may well be able to do this integration by inspection, or by quoting

the general result,

Similarly,

Find J2xcos (x + l)cbc.

2

1

cos x => du = cos x dx.



EXAMPLE 1.3

Using trigonometric identities in integration

Sometimes trigonometric identities can help when you are integrating a

trigonometric function. The next example uses the identity sin2 x + cos2 x = 1.

The method is typical when you have an odd power of sin x or cos x.

Therefore

You integrated CGSJC sin2;c
in Example 1.2. Use either
substitution or inspection.

When you have an even power of sin x or cos x, use one of the identities

associated with cos 2x> as in the next example.

The same method can be used to integrate cos2 x, using cos2 x = ̂  (cos 2x + 1).

Higher even powers of sin x and cos x can be integrated in a similar way, but

you have to use the identity more than once.

SOLUTION

Notice that

Find J cos3 x dx.

Integrating cosx is easy.

EXAMPLE 1.4

SOLUTION

Find J sin2 x dx.

The identity

Then

(cos 2x + 1) show thatBy expressing cos4 x as (cos2 x)2 and cos2 x as

and hence find f cos4 x, dx.

3

1

ACTIVITY 1.1



The mean value of the function f(x) over the interval a < x < b is defined as

Over the same interval the root mean square value of f(x) is defined as

When the function is periodic, the interval chosen is

usually a whole number of periods. These processes are useful in both physics
and statistics.

(i) Find the root mean square value of a sin t over a single period.
(i i) In the UK, mains electricity is usually supplied as alternating current at a

nominal 240 volts. This is the root mean square of the supply voltage, a sin t.
Show that the supply peaks at about 339 V.

Starting from the compound angle formulae sin (9 db <p) = sin 9 cos <p ± cos 9 sin <p
you can readily show that sin 9 cos <p = \ (sin (9 + <p) + sin (9 — $)). This enables
you to express the integral of the product of a sine and a cosine as the integral of the
sum of two sines. For example

(i i) Hence find
(a) J cos 3x cos x dx

(b) J sin 5x sin 2x dx.

4

1

(i) Starting from cos (9 db 0) = cos 9 cos (j) =p sin 9 sin 0 show that

and state and prove a similar result for sin 9 sin (p.

(cos (0 + 0) + cos (0-0))COS 0 COS

Another trigonometric identity is tan This allows you to find the

integral of tan x. Since

So tanx

ACTIVITY 1.2

ACTIVITY 1.3



EXAMPLE 1.5 Find J tan foe dx.

SOLUTION

5

1

Notice that tan and

So

1 Integrate these functions with respect to x.

2 Find the following indefinite integrals.

3 Evaluate these definite integrals, using substitution where necessary.

4 (i) Use a graphic calculator or a computer to sketch the graph of

y = sin x(cos x — 1) for 0 < x < 4n.

(i i) Find the area enclosed between the x axis and the positive part of one

cycle of the curve.

5 By expressing cos x in terms of cos find

6 (i) Find (cos 2x) and hence show that sin 2x

(i i) Use the identity sin 2x = 2 sin x cos x and the fact that

(sin x) = cos x to show that f sin 2x dx = sin x + B.

( i i i ) Use the identity sin 2x = 2 sin x cos x and the fact that

(iv) Explain how these three different looking answers can all be correct!

(cos x) = —sin x to show that J sin 2x dx = —cos2 x + C.

cos 2x + A.

dx.

(i) cos2 x

(iv) sin3 x

(vii) tan 2x

(ii) sin2 3x

(v) sin4 x

(viii) cotx

(iii) sec x

(vi) cos5 x

(ix) cot x + tan x

EXERCISE 1A



7 Find the mistake in the following argument.

Therefore 0 = -1.

The inverse trigonometric functions

The arcsine function

Figure 1.1

Figure 1.1 shows the graph of y = sinx. The sine function

is a many-to-one function: many values of x (for

example: —2yi, —n> 0, n, 2yi, etc.) give the same value of y.

You can find the inverse of any function by interchanging

x and y in the defining equation; this is equivalent to

reflecting the graph in the line y = x.

In the case of y = sin x you obtain the graph shown in

figure 1.2; its equation is x = sin/. For any value of x

(between — 1 and 1) there are infinitely many values of y>

so figure 1.2 is not the graph of a function. However, by

restricting the range of y you can define a function, so

that each value of x (between — 1 and 1) is associated

with a unique value of y. There are infinitely many ways

of doing this, but it is conventional (and sensible) to

(i.e. angles in the first quadrant)

as part of the required range, corresponding to 0 < x < 1.

To keep the function continuous (and to have as large a

domain as possible) you include -

quadrant angles, corresponding to — 1 < x < 0. Figure 1.3

shows the complete graph of this function. Its equation is

y = arcsinx. (Older textbooks and many modern

calculators use the notation sin"1 x.) You will notice that

the gradient of y = arcsinx is always positive, and that

the gradient tends to infinity as \x\ tends to 1. Figure 1.26

1

include

< y < 0, fourth



Now

Notice that the expression

• is positive and only defined for — 1 < x < 1

• has a minimum at x = 0

• tends to oc as x tends to db 1

all of which is consistent with the graph in figure 1.3.

The arccosine function

Figure 1.4

The inverse of the cosine function is dealt with in much the same way.

Figure 1.4 shows the graph of y = cosx. Reflecting the graph of figure 1.4 in the

line y — x produces the graph with equation x = cosy, shown in figure 1.5. This

is not the graph of a function. However, a function can be defined by restricting

the range of y so that each value of x (between — 1 and 1) is associated with a

7

Figure 1.3

But y = arcsin

so that cos The conclusion is

that (arcsin x)

1



Figure 1.5 Figure 1.6

(i) From the various graphs (without using calculus) what can you say about

the gradient of y = arccos x?

(i i) Use calculus to show that

The arctangent function

Figure 1.78

(arccos x)

1
unique value of y. Again the values are included (first quadrant

angles), corresponding to 0 < x < 1. To maximise the domain and preserve

continuity, the range includes < y < 7i, second quadrant angles. Figure 1.6

shows the complete graph of this function. Its equation is y = arccos x.

ACTIVITY 1.4



Figure 1.8 Figure 1.9

Describe the relationship of the various graphs shown in figures 1.7, 1.8 and 1.9.

Notice that the graph of y = arctanx has horizontal asymptotes. Describe
qualitatively how its gradient varies and then use calculus methods to show that

Show that

9

1

Domain: all real numbers

Range:

The results (arcsin x)

(arctanx)

and (arctan x) are particularly

important, allowing you to integrate additional functions, as is shown in the
next section.

(i) arcsec x = arccos

(ii) arccosec x = arcsin

( i i i ) arccot x = arctan with arccot

ACTIVITY 1.5

ACTIVITY 1.6



These formulae are useful as calculators, spreadsheets and other mathematical
software frequently include only the three elementary trigonometric functions
and their inverses.

General solutions

If you are looking for the general solution of an equation, you want a rule or
formula which will give you all the solutions, but no other values.

Equation

sin x = y

cos x = y

tan x = y

Form of the general solution (n is any integer)

x = nn + ( — 1 ) n arcsin y

x = 2nn db arccos y

x = nn + arctan y

1 State the domain and range of the inverse sine, cosine and tangent
functions.

2 Show that arcsin x + arccos

3 Show that arcsin (—x) = — arcsin x, and that arctan(—x) = — arctanx. State
and prove a formula connecting arccos(—x) and arccos x.

4 Show that arcsin(sin n) ^ n. Under what circumstances is arcsin (sin x) = x?

5 Show that arccos Vl — x = arcsm^/x.

6 Differentiate the following with respect to x.

( i i i ) arctan (iv) arctan (2 — 3x)

10

(i) arcsin x (ii) arcsin 5x

1

For example: one root of the equation sin x = arcsin another

root is x = 7i all roots are in the first or second quadrants as

sin x is positive. Every solution may be regarded as a number of complete

rotations plus or

These two forms may be written as

or where m is any integer.

Alternatively you may combine these two expressions and write the general

solution of sin as x = nn where n is any integer.

The table shows the other important forms.

EXERCISE 1B



11

1
7 Differentiate the following with respect to x.

(i) arcsm 2x

( i i i ) arcsin 3x2

(v) arctan (e*)

(vii) arccos (5x2 — 2)

(ii) arctan 5x

(iv) arccos 2x

(vi) arctan (1 — x2)

(viii) arcsin A/X

8 If f(x) = sin x + cos x, findf^Oc).

10 In each of the following, find the general solution of the equation. Where

possible give your answer as a rational multiple of TI; otherwise leave your

answer in a form involving an inverse trigonometric function.

9 Write down the derivatives of arcsin x and arccos x. Hence show that

dx may be expressed as arcsin x + c\ and as —arccos x + c2> where

c\ and c2 are arbitrary constants. Explain how the two results are compatible,

and express c2 in terms of c\.

(i) sin 2x = sin x

( i i i ) 3 cosx + 4sinx = 2.5

(v) cos x = cos y x

(ii) cos x — sin x = v 2
(iv) tan 2x = 4 tan x
(vi) 2 sin x = cos x + 1

11 State the domain and range of

(i) y = arcsec x

( i i i ) y = arccotx.

(ii) y = arccosec x

12 (i) (a) Bv sketching the graph of y = arcsec x show that (arcsec x) > 0.

(b) Show that (arcsec x)

(i i) Find

13 (i) Evaluate arcsec x + arccosec x.

(i i) Evaluate arctan x + arccot x.

Integration using inverse trigonometric functions

The inverse sine and tangent functions are particularly useful in integration.

Integration using the arcsine function

You will see the similarity between and dx and you

may well (correctly) guess that dx takes a similar form, but you will

Since (arcsin x) you know that dx = arcsin x + c.



EXAMPLE 1.6

perhaps be unsure what effect the number 9 has on the expression. Try treating
9 as a factor:

You can now construct the formula for
constant.

As x = 3u was a useful substitution when the denominator was A/9 — x2
y it

makes sense to use the substitution x = au so that dx = adu:

Take out the factor V3, then as in (i) with a = -,=

12

This is of the form dx with a = 4.

SOLUTION

Find

Let 3u = x so
that 3 du = cbc.

1

where a is a positive



EXAMPLE 1.7

13

1
Integration using the arctangent function

In the same way knowing that (arctan x) so that

dx = arctan x + c may well lead you to guess that dx takes a

similar form. But

putting au = x so
that a du = dx

Notice the factor

Find

SOLUTION

This is of the form dx with a = V5.

Note

Dimensions will help you understand (and remember) why the factor

Take out the factor 4, then as in (i) with ,

is needed in

but not in

Integration is a form of summation. In both integrals dx is a length. In (2) the

is a number divided by the square root of an area;expressior

multiplying by dx gives a dimensionless number; the sum of a series of numbers

is dimensionless; arcsin is an angle, also dimensionless - rO is well known as

an expression for the length of an arc of a circle, where r is the radius (a length)

and 9 the angle of the arc, in radians. So (2) is dimensionally correct. In © the

expression is a number divided by an area; multiplying by dx gives the



dimension L 1 (i.e. the reciprocal of a length); summing these does not change

is dimensionless and multiplying it by something like -

(with the dimension L~1) makes the two sides of © agree dimensionally. (In ©

the constant c has the dimension L~1; in (2) the constant c is dimensionless.)

The next example involves definite integration.

EXAMPLE 1.8
Evaluate

SOLUTION

ALTERNATIVE APPROACH

Alternatively you may make the substitution x = 2 tan uy remembering to
change the limits of integration at the same time. But the equation x = 2 tan u

does not define u uniquely: given x = 0, for example, u may be 0, or n, or any
multiple of n. However, though it looks more cumbersome, the equation

does define u uniquely, and is the preferred way of stating the

substitution. Then

1 Find the following indefinite integrals.

14

where u = arctan

when x = 2, when x = 0, u = 0.

u = arctan

1 the dimension; arctan

EXERCISE 1C



3 (i) Find

(i i) Using the substitution x = 2 sin 0, or otherwise, show that

[MEI, part]

Harder integrations

You have been integrating functions of the form:

The example below shows how the formula

you integrate rational functions with constant numerator, and a denominator

which is quadratic with no real roots.

EXAMPLE 1.9

Taking out the factor
4, and 'completing
the square' in the

denominator.

You may well be able to
omit these two lines.

When trying to integrate

no real roots? And what should you do if A is negative?

how can you tell if Ax2 + Bx + C has

15

?

SOLUTION

Find

2 Evaluate the following definite integrals, leaving your answers in terms of n.

1

and

arctan helps



The next example shows how the formula

helps you integrate functions that can be arranged as a fraction, with constant
numerator, and a denominator which is the square root of a quadratic; this
quadratic must have distinct real roots and the coefficient of x2 must be negative.

EXAMPLE 1.10 Taking out the factor 5 from
the numerator, and the factor 4
from 'inside' the square root in

the denominator.

Completing the square first and
adjusting the constant to get

Again you may well
be able to omit these

two lines.

The final example illustrates other ways these techniques may be used.

EXAMPLE 1.11
Find

16

The fraction being integrated is
split into two parts: one

numerator = constant X derivative
of denominator; the other

numerator is constant.

T

why is it necessary to have A negative and B > 4AC?

When using the formula dx = arcsin to integrate

du where and du = dx

SOLUTION

Find

dx = arcsin:

1

arcsin

arcsin

SOLUTION



Alternatively use any
of the substitutions

The rational function being
integrated is expressed in

partial fractions.

As x2 + 9 and (jc + 2):

f are clearly positive you
do not need to use

modulus signs here.

2 (i) By writing arcsin x as 1 x arcsin x use integration by parts to find
J arcsin x dx.

(i i) Use a similar method to find the following integrals.
(a) J arccos x dx

(b) J arctan x dx

(c) J arccot x dx

17

1 Find the following integrals.

1cbc is best found by inspection:

so that

EXERCISE 1D



3 (i) Use the substitution x= a sin u to find

(ii) Draw a sketch to show the significance of the area you calculated in part
(i), and explain both terms of your answer to part (i) geometrically.

4 Find the following integrals.

18

7 Find (arcsecx) and

6 Evaluate the following.

dx, where a > b > 0.
1

5 Find the following integrals.



KEY POINTS

1 When integrating sin2 x or cos2 x use the identities

Use when integrating rational functions with constant numerator, and a
quadratic denominator with no real roots.

Use when integrating functions that can be arranged as a fraction, with

constant numerator, and a denominator which is the square root of a
quadratic; this quadratic must have distinct real roots, and the coefficient
of x must be negative.

19

Function

y — arcsin x

y — arccos x

y — arctan x

Domain

-1 < x < 1

-1 < x < 1

all*

Range Derivative

3 Inverse trigonometric functions

1



Polar co-ordinates

[Let no one ignorant of geometry enter my door].
Inscription over the entrance to the Academy of Plato, c.430-349 BC

This Nautilus shell forms an equiangular spiral. How could you describe this
mathematically?

You will be very familiar with using cartesian co-ordinates (x, y] to specify the

position of a point P in a plane. A second system of co-ordinates uses the idea of

describing the position of point P by giving its distance r from a fixed point O

and the angle 9 between OP and a fixed direction. In this system, first used by

Newton in 1671, O is called the pole and the angle 9 is measured from the initial

line, which is usually drawn to the right across the page, like the positive x axis;

the numbers (r, 9) are called the polar co-ordinates of P; see figure 2.1.

initial line

Figure 2.1

20

2 2



If it is necessary to specify the polar co-ordinates of a point uniquely then you
use those for which r > 0 and — n < 9 < n; these are called the principal polar

co-ordinates.

Figure 2.2

It is easy to change between polar co-ordinates (r, 9) and cartesian co-ordinates
(xy y] since, from figure 2.2,

You need to be careful to choose the right quadrant when finding 0, since the

always gives two values of 9, differing by n. Always draw a

sketch to check which one of these is correct.

21

equation tan

The angle 9 is positive in the anticlockwise sense from the initial line; at the pole
itself r = 0 and 9 is undefined. Each pair of numbers (r, 9) gives a unique point,
but the converse is not true, for two reasons. Firstly, a point is not changed if
you add any integer multiple of 2n to the angle 9. Secondly, it is sometimes
convenient to let r take negative values, with the natural interpretation that the

point ( —r, 9) is the same as (r, 9 + n).

2

Check by drawing a diagram that the polar co-ordinates

all describe the same point.and

Give three other pairs of polar co-ordinates for the point

ACTIVITY 2.1



1 Plot the points A, B, C, D with polar co-ordinates

respectively. What shape is ABCD?

2 One vertex of an equilateral triangle has polar co-ordinates
the polar co-ordinates of all the possible other vertices
(i) when the origin O is the centre of the triangle
(ii) when O is another vertex of the triangle

( i i i ) when O is the mid-point of one side of the triangle.

3 The diagram shows a regular pentagon
OABCD, in which A has cartesian

co-ordinates (5, 2).

(i) Show that OB = 8.71 (correct to
2 decimal places).

(ii) Find the polar co-ordinates of
A, B, C, D.

( i i i ) Hence find the cartesian

co-ordinates of B, C, D.

[In parts (ii) and ( i i i ) give your answers correct to 2 decimal places.]

4 In this question r is in millimetres and 9 is in degrees. The scoring region of

a dartboard is marked by six concentric circles, called inner bull, outer bull,
inner treble, outer treble, inner double, outer double, with radii 6, 16, 99,
107, 162, 170 mm respectively (to the nearest mm, ignoring the thickness of
the dividing wire). The part between the outer bull and outer double circles
is divided into twenty equal 'sectors', numbered as shown below, and the

board is hung with the 20 sector vertically above the centre so that the initial
line bisects the 6 sector. A dart scores 50 in the inner bull and 25 in the
outer bull, where 6 < r < 16. A dart in a sector scores the sector number,
except that within the doubles ring (162 < r < 170) or trebles ring
(99 < r < 107) it scores double or treble the sector number respectively.

(i) Find the score in the region
for which 16 < r < 99 and
27 < 9 < 45.

(ii) Give conditions on r and 9

which define the boundary

between sectors 10 and 15.
( i i i ) Give conditions on r and 9

for the regions in which the

score is
(a) treble 14
(b) 17

(c) 18.
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Find

EXERCISE 2A



The polar equation of a curve

The points (r, 9) for which the values of r and 9 are linked by a function f form
a curve whose polar equation is r = f(9). The polar equation of a curve may be
simpler than its cartesian equation, especially if the curve has rotational
symmetry. Polar equations have many important applications, for example in

the study of orbits.

EXAMPLE 2.1 Investigate the curve with polar equation r = 10 cos 9.

SOLUTION

This can be tackled in three ways.

(i) By plotting. Make a table of values. This one has 9 increasing by

(i.e. 15°), which gives a convenient number of points.

Figure 2.3

23

Plotting these points gives the curve shown in figure 2.3. It looks like a circle

- the other methods will prove that it is a circle.

Values of 9 from 0 to —n (or from n to 2n) give the same points again: for

example, r = 9.7, which is the same point as

2



(i i) By converting to cartesian form.

If r ̂  0 then

Figure 2.4

Notes

1 Plotting and joining points as in part (i) above gives a good idea of the shape of

the curve, but the argument in parts (ii) or (iii) is needed before you can be sure

that this is truly a circle.

2 As the value of 9 increases from —n to n the point moves twice around the circle.

24
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which proves that the curve is the circle with radius 5 and centre (5, 0)
(in cartesian co-ordinates).

( i i i ) By geometrical reasoning. Knowing the answer makes it even simpler!
Consider the circle with radius 5 and centre (5, 0), shown in figure 2.4. If P
is the point on this circle with polar co-ordinates (r, 9) then OPA is a right
angle (the angle in a semi-circle) and so r = 10 cos 9 as required, and the
same applies to points on the lower semi-circle since the cosine function is
an even function.

Therefore the cartesian equation is

If r = 0 then x = y = 0, which also satisfies x2 + y2 = Wx.



EXAMPLE 2.2

If you have access to a graphic calculator or a computer with suitable software,

find out how to draw a curve from its polar equation. Check that you can adjust
the scales so that in this case you get a circle, not just an ellipse.

Some graphic calculators will not draw the curve r = f(9) directly, but instead
you can take 9 as a parameter and draw the curve with parametric equations
x = f(0) cos 0, y = f(9) sin 9. Explain why this works.

(i) Describe the motion of a point along the curve r = 1 + 2 cos 9 as 9 increases
from 0 to 2yi.

(ii) Do the same for the curve

SOLUTION

(i) The curve is shown in figure 2.5.

Figure 2.5

This double loop is one of a family of curves called lima$ons (snail curves).

25

?

2
ACTIVITY 2.2



(i i) The value of r is now the reciprocal of the value found in (i); the curve is
shown in figure 2.6.

This curve has two separate branches; it is an example of a hyperbola.

Figure 2.6

Note

The diagrams in the example above use the convention that the parts of the curve

for which r < 0 are shown by a broken line. In some applications it is physically

impossible for r to be negative, so it is sometimes worth distinguishing such

portions in this way.

In this exercise you should make full but critical use of a graphic calculator or
computer if these are available.

1 Make a table of values of 8 sin 9 for 9 from 0 to n at intervals of

and say what happens when n < 9 < 2n. By plotting points draw the curve
r = 8 sin 9. Prove that this curve is a circle, and give its cartesian equation.

2 Draw the graph of the spiral of Archimedes

26
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EXERCISE 2B



3 A curve with polar equation r = k sin n9> where k and n are positive and n is
an integer, is called a rhodonea (rose curve). Throughout this question take

k= 10.
(i) What shape is the curve when n = 1?
(i i) Draw the curve when n = 2.

( i i i ) Draw the curve when n = 3.

(iv) From these examples (and others if you wish) form a conjecture about
how the number of 'petals' depends on n.

4 A curve with polar equation r = a( 1 + cos 9) is called a cardioid. Draw the

curve when a = 8, and account for its name.

5 Prove that r = a sec 9 and r = b cosec 0, where a and b are non-zero constants,
are the polar equations of two straight lines. Find their cartesian equations.

6 The straight line f. passes through the point A with polar co-ordinates (p, a)
and is perpendicular to OA. Prove that the polar equation of i is

rcos(0 — a) = p.

Use the expansion of cos (9 — a) to find the cartesian equation of L

7 Sketch on the same diagram the curves with polar equations r = 2a cos 0,
2r(l + cos 9) = 3a and find the polar co-ordinates of their points of
intersection.

What is the polar equation of the common chord of the two curves?
[MEI]

The area of a sector

The region bounded by an arc UV of a curve and the two lines OU and OV is
called a sector. In order to find the area of the sector for which OU and OV are

the lines 9 = a and 9 = /? and the curve is r = f(0) you first divide it into small
sectors such as OPQ, where P and Q have co-ordinates (r, 9) and
(r + 5r, 9 + 50), as in figure 2.7.

Figure 2.7

27
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Let the areas of sectors OUP and OPQ be A and 5 A respectively. Then since the
area of sector OPQ lies between the area of the circular sectors OPP7 and OQQ7,

From this key result the area of the sector can be found by integration:

The argument given above is based on figure 2.7 in which

(i) 5 dispositive (ii) r increases as 0 increases.

Consider how the argument must be adapted if

(a) be is negative
(b) r decreases as 0 increases
(c) both (a) and (b).

Note that the final result remains the same in all cases.

EXAMPLE 2.3 Find the area of the inner loop of the limacon r = 1 + 2 cos 9 drawn in figure 2.5.

SOLUTION

The inner loop is formed as 9 varies from

28

using cos2$ = (1 + cos 20)

so its area is-to

?

2
Remember that 0 is in radians.

and so

Now as the rate of change of A with respect to 9.

But is trapped between which is fixed, and which tends to

, and so must also tend to Therefore

area



5 Sketch Bernoulli's lemniscate (ribbon bow) r = a cos 20, and find the area
of one of its loops.

6 A curve has polar equation r = a(\ — cos 0), for 0 < 9 ̂  2ny where a is a
positive constant.
(i) Sketch the curve.
(i i) Find the area of the region enclosed by the curve.

[MEI, part]
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2
Note

Even though r is negative for the integrand is always positive, so

there is no problem of 'negative areas' as there is with curves below the x axis in cartesian co-ordinates.

For the lima^on r = 1 + 2 cos 9 find

(i) the total area contained by the outer loop
(ii) the area between the two loops.

1 Check that gives the area of the circle r = 10 cos 9 correctly when

the integral is evaluated from to or from 0 to n. What happens when

the integration is from 0 to 2yi?

2 Find the area bounded by the spiral
initial line.

from 9 = 0 to 9 = 2n and the

3 Find the areas of the two portions into which the line
upper half of the cardioid r = 8(1 + cos 9).

divides the

4 The diagram below shows the equiangular spiral r = ae , where a and k are

positive constants, and the lines 9 = 0 and Prove that the areas of

the regions A, 5, C, . . . between these lines and successive whorls form a
geometric sequence, and find its common ratio.

EXERCISE 2C

ACTIVITY 2.3



7 The interior of the circle r = 3 a cos 9 is divided into two parts by the

cardioid r = a(l + cos 9). Find the area of the part whose boundary passes

through the origin.

[MEI]

8 A curve is defined by the parametric equations x = f(t), y = g(t). By

9 The arc PQ is defined by x = t2, y = t3, 1 < t < 2. Use Question 8 to find

the area of the sector bounded by this arc, OP and OQ.

10 Sketch the astroid x = acos3t, y = asin3t, and find the area it encloses.

11 Prove that the area enclosed by the curve

x = a cos t + b sin t, y = c cos t + d sin t

is n\ad — bc\.

12 (i) Sketch the curve with polar equation r = a sin 30 for 0 < 9 < TT, where

a is a positive constant. Use a continuous line for sections where r > 0,

and a broken line for sections where r < 0.

(ii) Find the area enclosed by one loop of this curve.

The point P on the curve corresponds to

( i i i ) Mark the point P on your sketch, and give the co-ordinates of P in

polar and in cartesian form.

You are given that the cartesian equation of the curve is

x4 + 2x2y2 + v4 = 3ax2y — ay3.

(iv) Differentiate this cartesian equation to obtain an equation involving

(v) Find the gradient of the curve at the point P.

[MEI]

30

differentiating the relation tan with respect to t show that

As t increases from t\ to t2 the point on the curve moves from P! to P2, and

9 increases. Prove that the area of the sector OP^ is

2

x, y and



13 A curve has polar equation r = 2A/COS 29, for
(i) Sketch the curve.
(i i) Find the area of the region enclosed by the curve.
( i i i ) By first writing the polar equation of the curve as r2 = 4(cos2 9 — sin2 0),

show that the cartesian equation of the curve is

(iv) Differentiate this cartesian equation to obtain a relationship between

INVESTIGATION

KEY POINTS

The curve C has equation . By working through the following

investigate the shape of C.

(i) Draw C for k = 4 and e taking the values (a) 0 (b) 0.5 (c) 1 (d) 2 (e) 5.

You may use a graphic calculator or graph-drawing software.

(ii) What happens to C if the value of k is changed?
( i i i ) Describe C for (a) e = 0 (b) 0 < e < 1 (c) e = 1 (d) e > 1.

1 The principal polar co-ordinates (r, 9) are those for which r > 0 and

3 The area of a sector is

31

2 x = r cos 9, y = r sin 0, 9 = arctan (±71 if necessary).

(v) If P is a point on the curve where
O is the origin.

show that OP = V2, where

(vi) Find the polar co-ordinates of the two points on the curve where

xy y and

[MEI]

2



Complex numbers

The shortest path between two truths in the real domain passes through
the complex domain.

Jacques Hadamard, 1865-1963

Graphical representation of fluid-flow around a pipe

Complex numbers may appear to be a mere mathematical curiosity but this is

far from the truth. They have many applications in the real world. For example,

electrical engineers use j to analyse oscillating currents. Physicists have found

that imaginary numbers provide the best language for describing some

real-wo rid phenomena, such as the flow of fluid around a pipe or solutions to

differential equations modelling shock absorbers.

The polar form of complex numbers

The position vector of the point z in an Argand diagram can be described by means

of its length r and the angle 9 it makes with the positive real axis (figure 3.1).

32
Figure 3.1
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The distance r is of course |z|, the modulus of z. The angle 9 is slightly more
complicated: it is measured anticlockwise from the positive real axis, normally in
radians, but is not uniquely defined since adding 2kn (for any integer k) to 9
gives the same direction. To avoid
confusion, it is usual to choose that
value of 9 for which —n<9^n; this
is called the principal argument of z,
denoted by arg z. Then every complex
number except 0 has a unique principal
argument: the argument of 0 is undefined.
For example, with reference to figure 3.2,

Figure 3.3

These can be used to find the real and imaginary parts from the modulus and
argument, and vice versa, but care is needed in finding the argument from the

real and imaginary parts. It is tempting to say that 9 = arctan

which is correct only if z is in the first or

fourth quadrants. For example, the point z\ = 2 — 3j is in the fourth quadrant,

« -0.98 rad(^ -56°).and its argument is correctly given by arctan

But z2 = — 2 + 3j is in the second quadrant, where its argument is

33

3

arctan 7i ~ 2.16rad (~ 124°) as in figure 3.4 overleaf.

but this

gives a value between and

It is clear from figure 3.3 that

and the same relations hold in the other
quadrants too.

Figure 3.2

Find (i) arg j (ii) arg(^/3 + j) ( i i i ) arg(—4 — 4j) (iv) argACTIVITY 3.1



Figure 3.4

The general results for all quadrants are shown in figure 3.5. It is wise to draw a
sketch diagram each time.

Figure 3.5

Mark the points 1 + j, 1 — j, — 1 + j, — 1 — j on an Argand diagram. Find arg z
for each of these, and check that the statements in figure 3.5 are correct.

Most calculators can convert from (x, y) to (r, 9) (called rectangular to polar,
often shown as R^ P) and from (r, 9) to (x, y) (polar to rectangular, P —»R).
Find how to use these facilities on your calculator, and compare with other
available types of calculator. Does your calculator always give the correct 0, or
do you sometimes have to add or subtract TI?

Since x = r cos 9 and y = r sin 9 we can write the complex number z = x + yj in
the form

z = r( cos 9 + j sin 9).

This is called the polar or modulus-argument form. For example

34

3

4 + 3j = 5( cos a + j sin a) where a = arctan w 0.644.

ACTIVITY 3.2

ACTIVITY 3.3



3
In Questions 1-16, find the modulus and principal argument. Give the argument in

radians, either as a simple rational multiple ofn or correct to 3 decimal places.

17 Given that arg(5 + 2j) = a, find the principal argument of each of the
following in terms of a.

In Questions 18-22, write the complex numbers in polar form.

23 (i) Given that z = cos 9 + j sin 0, plot the points 0, 1, z, 1 + z on an Argand
diagram. What sort of quadrilateral do these points form? Hence find
the modulus and argument of 1 + cos 9 + j sin 9.

(i i) Obtain the same result by expressing 1 + cos 9 + j sin 9 in terms of cos

and

( i i i ) Find the modulus and argument of 1 — cos 9 — j sin 9.

24 (i) Given that a = — 1 + 2j, express a2 and a3 in the form a + bj. Hence

show that a is a root of the cubic equation

z3 + 7z2 + 15z + 25 = 0.
(i i) Find the other two roots of this cubic equation.
( i i i ) Illustrate the three roots of the cubic equation on an Argand diagram,

and find the modulus and argument of each root.
(iv) L is the locus of points in the Argand diagram representing complex

numbers z for which
equation lie on L and draw the locus L on your diagram.

35

Show that all three roots of the cubic

EXERCISE 3A



EXAMPLE 3.1

Sets of points using the polar form

Draw Argand diagrams showing the sets of points z for which

SOLUTION

(i) arg

the vector z has direction

z lies on the half-line from the origin

direction, see figure 3.6.

(Note that the origin is not included,

since arg 0 is undefined.)

the vector z — ] from the point j

to the point z has direction

z lies on the half-line from the

direction, see figure 3.7.

the vector z — } from the point j to the point z has

(iv) arg(z - j) = arg(z - 2 + j)

the vectors from points j and 2 — j to

the point z are in the same direction

and sense

z lies on the line joining points j and

2 — j, but does not lie between these

points or at either of them, see

figure 3.9.
Figure 3.9

Figure 3.6
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Figure 3.8

Figure 3.7

3

in the

(i i) arg(z-j)

point j in the

direction between 0 and (inclusive)

z lies in the one-eighth plane shown in figure 3.8.



Multiplication in the Argand diagram

The polar form quickly leads to an elegant geometrical interpretation of the
multiplication of complex numbers. For if

Zi = ri(cos 9i + j sin 9i) and z2 = r2(cos 92 + j sin 92)

then z^ = rir2(cos 9i + j sin ̂ ^(cos 92 + j sin 92)

= r1r2[cos01 cos 02 — sin^ sin02 + j(sin0! cos02 + cos0! sin02)]-

Using the compound angle formulae gives

Zlz2 = rlr2[cos(9l + 0 2 )+ js in(0 1 + 0 2)]«

This is the complex number with modulus r^ and argument (Q\ + 92)y so we
have the beautiful result that

So to multiply complex numbers in polar form you multiply their moduli and
add their arguments. 37

and

arg(z!Z2) = arg^ + argz2 (± 2yi if necessary, to give the principal argument).

3
In Questions 1-6, draw an Argand diagram showing the set of points zfor which
the given condition is true.

7 Find the least and greatest possible values of arg z if \z — 8j| < 4.

8 If A: is positive and \z\ < fc, prove that 0 < z + k\ < 2k and

Find the least and greatest values of z + 2k\ and arg(z + 2k).

In Questions 9-11, draw an Argand diagram showing the set of points zfor which

the condition is true.

12 Prove that the set of points for which arg(z — 1) = arg(z + 1) is part of

the set of points for which \z — j| = y2, and show which part clearly in a
diagram.

\ZlZ2\ = NN

EXERCISE 3B



Using this interpretation, investigate
(i) multiplication by j
(i i) multiplication by —1.

This gives the following simple geometrical
interpretation of multiplication.

To obtain the vector ZiZ2> enlarge the vector Zi

by the scale factor \z2\ and rotate it through

argz2 anticlockwise about O (figure 3.10).

This combination of an enlargement followed
by a rotation is called a spiral dilatation.

Figure 3.10

Check this by accurate drawing and measurement for the case

Zi = 2 + j, z2 = 3 + 4j. Then do the same with Zi and z2 interchanged.

The corresponding results for division are easily obtained by letting

Then z\ = wz2 so that

\z\ I = H \z21 and arg z\ = arg w + arg z2 (±2n if necessary).

Therefore

= arg^ — argz2 (± 2n if necessary, to give the principal argument).

So to divide complex numbers in polar form you divide their moduli and
subtract their arguments.

38

11 Given the points 1 and z on an Argand diagram, explain how to find the
following points by geometrical construction:

10 Prove that, in general, arg arg zy and deal with the exceptions.

(i) 3z

(iv) z*

(ii) 2jz

(v) Izl

(iii) (3 + 2j)z

(vi) z2

In Questions 1-9, given that z = 2 and

find the following in polar form.w = 3

and arg

3
ACTIVITY 3.4

ACTIVITY 3.5

EXERCISE 3C



(i) Show that a = 2 + 2j.
(i i) Show that |a| = |/?|. Find arga and arg(5.

( i i i ) Find the modulus and argument of a/?. Illustrate the complex numbers
a, /? and a/? on an Argand diagram.

(iv) Describe the locus of points in the Argand diagram representing complex

numbers z for which \z — a| = z — fi\. Draw this locus on your diagram.
(v) Show that z = a + /? satisfies \z — a = \z — fi\. Mark the point

representing a + /? on your diagram, and find the exact value of arg(a + /?).
[MEI]

16 The right-hand diagram below shows what happens to the character drawn
on the Argand diagram on the left when each point representing z is
replaced by the point representing z2. Explain why

(i) the knife has moved nearer the origin, but got longer;

(i i) his forearm has moved from vertical to horizontal;
( i i i ) his boots have grown more than his head;
(iv) he has stabbed himself in the stomach.

39

3
12 Describe the motion of each of the points in Question 11 as the point z moves

(a) along the imaginary axis from —j to j;

(b) once anticlockwise around the circle z\ = 1, starting at z = 1.

13 By considering powers of 2 + j, show that the position vector bisects

the angle formed by the position vectors and Check this by

vector methods, using the scalar product.

14 Find the real and imaginary parts of

Express — 1 + j and 1 + y^j in polar form.

Hence show that and find an exact expression for

15 The complex numbers a and /? are given by 2 — j and



de Moivre's theorem

When you multiply two complex numbers (in polar form) you multiply their
moduli and add their arguments: the product of

Zi = ri(cos 0i + j sin 0J and z2 = r2(cos 92 + j sin 02)

is ZiZ2 = rlr2(cos(9l + 02) + jsin(0i + 02)).

Much can be done by using this result repeatedly with just a single complex
number z, of modulus 1. This allows you to concentrate on what happens to the
argument.

For if z = cos 0 + j sin 0

then z2 = cos (0 + 9) + j sin(0 + 9) = cos 20 + j sin 20,

z
3 = Z

2
Z = cos (20 + 0) + j sin (20 + 0) = cos 30 + j sin 30,

and so on. This suggests the following general result.

de Moivre's theorem

If n is any integer then
(cos 0 + j sin 9)n = cos n9 + j sin n0.

Proof
The proof is in three parts, in which n is (i) positive (ii) zero or ( i i i ) negative.
(i) When n is a positive integer the proof is by induction.

The theorem is obviously true when n = 1, and if

(cos 0 + j sin 9)k = cos k9 + j sin k9

then (cos 0 + j sin 0)fc+1 = (cos fc0 + j sin k9)(cos 9 + j sin 0)

= cos(fc0 + 0 )+ j s in ( f c0 + 0)

= cos ( f c+ l )0 + j s i n ( f c + l ) 0

40

so by induction the theorem is true for all positive integers n.

(i i) By definition, z° = 1 for all complex numbers z ^ 0. Therefore

(cos 0 + j sin )° = 1 = cos 0 + j sin 0.

( i i i ) For negative n the proof starts with the case n = — 1. Since

(cos 0 + j sin 0)(cos (-0) + j sin (-0)) = cos (0 - 0) + j sin (0 - 0) = 1

it follows that (cos 0 + j sin 0)"1 = cos (-0) + j sin (-0). ©

If n is a negative integer, let n = — m. Then

(cos 0 + j sin 0)n = (cos 0 + j sin 0)"m

= [(cos0 + jsin0)m]-1

= (cos m9 + j sin m9)~l using (i) for m, which is positive

= cos ( — m0) + j sin (— m0) using © with m0 in place of 0

= cos n9 + j sin n0.



de Moivre's theorem is also useful for simplifying powers of complex numbers
when the modulus is not 1. For if z = r( cos 9 + j sin 9) then

zn = [r(cos 9 + j sin 9)]n = rn(cos 9 + j sin 9)n = rn(cos n9 + j sin n9).

EXAMPLE 3.2

(ii) First convert to polar form:

Historical note

Abraham de Moivre (1667-1754) came to England from France as a Huguenot refugee at the age of

eighteen and spent the rest of his long life in London. In papers from 1707 onwards he made use of

'his' theorem, though he never published it explicitly.

[Hint for (iv): cos 9 - j sin 9 = cos (-9) + j sin (-9)]

41

SOLUTION

(i) By de Moivre's theorem

Evaluate

3

1 Use de Moivre's theorem to evaluate the following.EXERCISE 3D



2 By converting to polar form and using de Moivre's theorem, find the

following in the form x + jy, giving x and y as exact expressions or correct

to 3 decimal places.

4 Deduce from de Moivre's theorem that (cos 9 —} sin 9)n = cos nO —} sin nO

(i) by putting 9 = — (j) (ii) by using conjugates.

Using de Moivre's theorem

One of the reasons for the general acceptance of complex numbers during the

eighteenth century was their usefulness in producing results involving only real

numbers; these results could also be obtained without using complex numbers,

but often only with considerably greater trouble; de Moivre's theorem is a good

source of such examples.

EXAMPLE 3.3 Express cos 50 in terms of cos 9.

SOLUTION

By de Moivre's theorem

(where c and s are used as abbreviations for cos 9 and sin 9 respectively).

Equating real parts:

Therefore cos 50 = 16 cos5 0-20 cos3 0 + 5 cos 0.

42

3

3 Simplify the following.



(i) Check that the above expression for cos 50 gives the correct results when
0 = 0 and when 9 = n.

(ii) By equating imaginary parts find sin 50 in terms of sin 9.

Notice that de Moivre not only gives a straightforward solution of the original
problem, but also gives the expression for sin 50 with very little extra work - two
for the price of one!

Example 3.3 gave a multiple-angle formula in terms of powers; it is sometimes
useful (e.g. when integrating) to do the reverse. For this you need the following
deduction from the main theorem:

43

if

then

and

3

Therefore

and

EXAMPLE 3.4 Express cos5 9 in terms of multiple angles.

SOLUTION

Let

Then

Use a similar method to express sin5 9 in terms of multiple angles.

ACTIVITY 3.6

ACTIVITY 3.7
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3
1 Prove that cos 49 = c4 — 6c2s2 + s4 and sin 49 = 4c3s — 4cs3, where

c = cos 9, s = sin 9.

Use these results to find tan 49 as a rational function of tan 9.

[Hint: Put tan 49 = and divide throughout by c4.]

2 Find the expressions for cos 39 and sin 39 given by de Moivre's theorem.
Hence express
(i) cos 39 in terms of cos 9
(ii) sin 39 in terms of sin 9
( i i i ) tan 39 in terms of tan 9.

3 Find cos 69 and in terms of cos 9.

4 If c = cos 9y s = sin 9y t = tan 9 show that

and

Hence find tan n9 in terms of t.

5 Express each of the following in terms of multiple angles.
(i) cos40

(iv) cos3 9 sin4 9
(ii) sin50
(v) cos4 9 sin3 9

( i i i ) sin60

6 Prove that cosm 9 sinn 9 can be expressed in terms of the cosines of multiple
angles if n is even, and in terms of the sines of multiple angles if n is odd.

7 Use your previous results to find these integrals.

8 Use cos n9 to express

cos 9 + cos 39 + cos 50 H h cos (In - 1)9

as a geometric series in terms of z. Hence find this sum in terms of 9.

9 (i) Given that z = cos 9 + i sin 0, write down zn and in the form a + jb.

Simplify and

(ii) By considering z5
y show that tan 50 =

( i i i ) By considering

that sin2 9 cos4 9 = p + q cos 29 + r cos 40 + s cos 60.

find the constants p, q, r and s such

[MEI]

EXERCISE 3E



10 (i) Given that z = cos 9 + j sin 0, write down zn and in the form a + ]b.

3Simplify zn and

(i i) Expand and hence find the constants p, q, r and s

such that sin 9 cos 9 = p + qcos29 + r cos 40 + s cos 60.
( i i i ) Using a suitable substitution, and your answer to part (ii), show that

11 By expressing cos n 9 in terms of cosines of multiple angles, prove that

[MEI]

What is

Complex exponents

When multiplying complex numbers in polar form you add the arguments, and

when multiplying powers of the same base you add the exponents. This suggests
that there may be a link between the familiar expression cos 9 + j sin 9 and the

seemingly remote territory of the exponential function. This was first noticed in
1714 by the young Englishman Roger Cotes, two years before his death at the

age of 28 (when Newton remarked clf Cotes had lived we might have known
something'), and made widely known through an influential book published by
Euler in 1748.

Let z = cos 9 + j sin 9. Since j behaves like any other constant in algebraic
manipulation, to differentiate z with respect to 9 you simply differentiate the

real and imaginary parts separately. This gives

So z = cos 9 + j sin 9 is a solution of the differential equation

If j continues to behave like any other constant when it is used as an index, then

the general solution of where c is a constant, just as
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is the general solution of

Therefore



Putting 0 = 0 gives

cos 0 + j sin 0 = e°+c

The problem with this argument is that you have no way of knowing how j
behaves as an index. But this does not matter. Since no meaning has yet been
given to ez when z is complex, the following definition can be made, suggested
by this work with differential equations but not dependent on it:

Note

The particular case when 9 = n gives ej71 = COSTT + jsinTi = -1, so that

This remarkable statement, linking the five fundamental numbers 0, 1, j, e, n, the

three fundamental operations of addition, multiplication and exponentiation, and

the fundamental relation of equality, has been described as a 'mathematical

poem'.

The first use of e^ is simply as a more compact way of writing familiar
expressions. For example, the polar form r(cos 9 + j sin 9) can now be
abbreviated to re^ , and de Moivre's theorem becomes the seemingly obvious
statement

The definition of ez for any complex number z is now fairly obvious. Since you
naturally want to preserve the basic property ea+b = ea x efc, it follows that if
z = x + ]y then ez = ex x ejr.

This suggests the definition

Notice that, when y = 0, ez = ex, so that when z is real this definition of ez gives
the exponential function you have used until now. Also, taking x = 0,
ejr = cosy + j sin/, agreeing with the definition suggested by the differential
equation.

Prove that ez+2nni = ez. This means that the exponential function is periodic,

with the imaginary period 2nj.
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3

and it follows that

ACTIVITY 3.8



EXAMPLE 3.5 Given two complex numbers, z and w, prove from the definition that

SOLUTION

Let z = x + ]y and w = u + }v. Then

EXAMPLE 3.6

Since ej0 = cos 0 + j sin 0 and e ]e = cos (-0) + j sin (-0) = cos 9 - j sin 0, it
follows that

and

These are essentially the same as the results which were used in Example 3.4.

Prove that

SOLUTION

The factor e^ '2 on the right-hand side suggests writing each term on the left-
hand side as a multiple of e^ '2 .

and

Therefore

You should remember the result of Example 3.6 as it will be useful in the work of

the next section. See Question 6 of Exercise 3F for an alternative method.

3

as required.

Note

47



1 Express ez in the form x + jy, where z is the given complex number.
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3

2 Find all the solutions of ez = e3, and plot some of them on an Argand
diagram.

3 Find all the solutions of ez =

diagram.
and plot some of them on an Argand

4 Find all the values of z for which ez* = (ez)*.

5 Prove that

6 Plot the points 0, 1, e^, 1 + e^ on an Argand diagram.

What sort of quadrilateral do these points form?

Use the geometry of this quadrilateral to prove again the results of
Example 3.6 and Question 5.

7 Prove that

8 If z = f(p) + jg(p)> where p is a real parameter, then the derivative and

integral of z with respect to p are defined by and

Prove that if z = e°^ where a is a fixed complex number, then

and

9 The position at time t of a point Z moving in an Argand diagram is given

by z = rej , where r and 9 depend on t.

Find and and deduce the radial and transverse components of the

velocity and acceleration of Z. (The radial and transverse directions are
respectively parallel and perpendicular to OZ.)

10 Let C = and

Show that A, where A is a constant. Hence find C and S.

11 Find eax cos bx dx and eax sin bx dx

(i) by using integration by parts twice
(ii) by using the method of Question 10.

Which method do you prefer?

EXERCISE 3F



3
Summations using complex numbers

This section shows how complex numbers can be used to evaluate certain real
sums. It may be possible to do these summations without using complex
numbers (e.g. by induction, once you know the answer), but this is considerably
more awkward. Sometimes it is worth setting out to do more than is required, as

in the next example.

EXAMPLE 3.7 Find a simplified expression for the sum of the series

SOLUTION

At first sight this series suggests the binomial expansion (1 + cos 9)n: the

coefficients 1( = nC0)> nCly
 nC2, ...,!(= nCn) are right, but there are multiple

angles, cos r9y instead of powers of cosines, cosr 9. This indicates that

de Moivre's theorem can be used. The trick is to introduce the corresponding
sine series too.

Let

and

Then

Using de Moivre's theorem:

This is now recognisable as a binomial expansion, so that

To find C you need to find the real part of (1 + e^)n, and here Example 3.6 is
useful:

Taking the real part,

State the result obtained by equating imaginary parts.

Remember there are alternative notations for binomial coefficients, HCr or
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3
1 Let C= 1 +cos# + cos20H hcos(n- 1)0

and S = sin 0 + sin 20 -\ h s in (n - 1)0.

Show that C + jS is a geometric progression with common ratio e j and

sum By multiplying the numerator and denominator of this sum

by show that and find S.

2 (ii) Show the points 2 and 2 on an Argand diagram, and

hence show that 2

(ii) Deduce that

( i i i ) State the corresponding result for sines.

3 You are given that w where

(i) Express e)w and e ]W in the form a + j&, and show that w = — je^ sin 9.

(ii) Find | w andargw.
Hence write down the modulus and argument of each of the two square

roots of w.

Series C and S are defined by

C = cos 9 cos 9 + cos 29 cos2 9 + cos 39 cos3 9 H h cos n9 cosn 9

S = sin 9 cos 9 + sin 29 cos2 0 + sin 39 cos3 0 H h sin n# cosn 0.

( i i i ) Show that C + jS is a geometric series, and write down the sum of this
series.

(iv) Using the results in part (i), or otherwise, show that C

and find a similar expression for S.

4 (i) Given that z = cos 9 + j sin 0, express z2, z3 and zn in the form a + jfc.

[MEI]

The infinite series C and S are defined as follows:

(ii) Express C + jS in terms of z, and show that it is a geometric series.

( i i i ) Write down, in terms of z, the sum to infinity of this geometric series.
(iv) Express, in terms of 0, the sum to infinity of (a) C (b) S.

(v) Show that
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[MEI]
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Complex roots: the roots of unity

As early as 1629 Albert Girard stated that every polynomial equation of degree n
has exactly n roots (including repetitions); this was first proved by the 18-year-old
Carl Friedrich Gauss 170 years later.

Therefore even the simple equation zn = 1 has n roots. Of course one of these is
z = 1, and if n is even then z = —1 is another. But where are the rest?

(i) Write down the two roots of z2 = 1, and show them in an Argand diagram.
(ii) Use z3 - 1 = (z - l)(z2 + z + 1) to find the three roots of z3 = 1. Show

them in an Argand diagram.
( i i i ) Find the four roots of z4 = 1, and show them in an Argand diagram.
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5 (i) Write down, in the form a + ]b, the following complex numbers:
e'e, e'"e and e^6'. 3

(i i) Show that

The infinite series C and S are defined as follows:

( i i i ) Show that

(iv) Hence find expressions for C and S in terms of cos 0, sin 9 and cos 20
only.

[MEI]

6 (i) Express the complex number e)n in the form a + bj.
(i i) Simplify and

Infinite series C and S are defined as follows:

( i i i ) Show that

(iv) Hence find expressions for C and S in terms of cos 9 and sin 9.
[MEI]

7 Sum the series

ACTIVITY 3.10



3
Every root of the equation zn = 1 must have unit modulus, since otherwise the
modulus of zn would not be 1. So every root is of the form z = cos 9 + j sin 9,

and
(by de Moivre)

where k is any integer,

since, in polar form, 1 is (1, 0) or (1, 2n) or (1, 4n) or ....

As k takes the values 0, 1,2, ..., n — 1 the corresponding values of 9 are

giving n distinct values of z. But when k = n then 9 = 2n> which gives the same
z as 9 = 0. Similarly any integer value of k larger than n differs from one of

0, 1, 2, ..., n — 1 by a multiple of n, and so gives a value of 9 differing by a

multiple of 2n from one already listed; the same applies when k is any negative
integer.

Therefore the equation zn = 1 has precisely n roots. These are

These n complex numbers are called the nth roots of unity. They include z = 1

when k = 0 and, if n is even, z = — 1 when k = It is customary to use co (the

Greek letter omega) for the root with the smallest positive argument:

Then, by de Moivre's theorem,

so that the nth roots of unity may
be written as

The complex numbers 1, co, co2, ...,
(Dn~l are represented on an Argand

diagram by the vertices of a regular
n-sided polygon inscribed in the
unit circle with one vertex at the
point 1. Figure 3.11 The nine ninth roots of unity

Prove that (a/)* = con~r.

52

ACTIVITY 3.11



The sum of all the nth roots of unity is a geometric series with common ratio co:

Substituting these in the expression for z and simplifying gives

Work through Example 3.8 in the case when n is even. (Be careful: what is the
degree of the equation now?)

1 Explain geometrically why the set of tenth roots of unity is the same as the
set of fifth roots of unity together with their negatives.

2 If co is a complex cube root of unity, co 7^ 1, prove that

(i) ( l + c o ) ( l + c o 2 ) = 1
(i i) 1 + (D and 1 + co>2 are complex cube roots of — 1
( i i i ) (a + b)(a + cob)(a + co2b) = a3 + b3

(iv) (a+b+ c](a + cob + co2c)(a + co2b + coc) = a3 + b3 + c3 - 3afcc.

3 A regular hexagon is inscribed in the unit circle. One vertex is a. Give the
other vertices in terms of a and co, where CD is a complex cube root of unity.
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Since a is a nth root of unity, 9 = and so the roots are z = tan

k = 0, 1, 2, ..., n- 1.

3
since a)n = 1

Therefore the sum of all n of the nth roots of unity is zero.

EXAMPLE 3.8 Solve the equation (1 + }z)n = (1 - }z)n, where n is odd.

SOLUTION

The equation can be rearranged as

By taking the nth root of both sides you have,
nth root of unity.

where a = e^ is an

Solving this for z gives z = , where since n is odd a + 1 7^ 0.

As in Example 3.6
and Exercise 3F
Questions 5, 6.

But

and

ACTIVITY 3.12
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4 The complex numbers 1, co, co2, ..., con l are represented as vectors in an
Argand diagram, following cnose to tail' in order. Explain geometrically why
these form a regular polygon. Hence prove again that the sum of all the nth
roots of unity is zero.

5 (i) (a) Draw an Argand diagram showing the points 1, co, co2, co3, co4,

where co

(b) If a = co2 show that the points 1, a, a2, a3, a4 are the same as the
points in (a), but in a different order. Indicate this order by joining
successive points on your diagram.

(c) Repeat (b) with a replaced by /?, where (5 = co3.

(ii) Repeat the whole of (i) taking

points 1, co, ..., co5; 1, a, ..., a5; 1, /?, ..., /?5.
( i i i ) Do likewise for the seventh and eighth roots of unity.

form a conjecture about when

{l,co,co2, ...,con-1} = {l,a,a2 , ...,0^}.

6 Solve the equation z3 = (j — z)3.

7 Solve the equation z5 + z4 + z3 + z2 + z + 1 = 0.

8 Prove that all the roots of (z - l)n = zn have real part }.

9 Solve the equation (j - z)n = (jz - l)n.

10 Solve the equation (z + j ) n + (z - j ) n = 0.

Complex roots: the general case
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To find the nth roots of any given non-zero complex number w you have to
find z such that zn = w. The pattern of argument is the same as in the previous
section on nth roots of unity, but adjusted to take account of the modulus s and
argument c/> of w. So let

z = r(cos 9 + j sin 9) and w = s(cos c/> + j sin c/>).

Then

zn = w o rn(cos 9 + j sin 9)n = s(cos c/> + j sin c/>)
4=> rn(cos n0 + j sin n0) = s(cos c/> + j sin c/>).

Two complex numbers in polar form are equal only if they have the same
moduli and their arguments are equal or differ by a multiple of 27i. Therefore

rn = s and n9 = (j) + 2/CTi, where k is an integer.

Since r and s are positive real numbers the equation rn = s gives the unique
value r = s1/" , so all the roots lie on the circle z\ = s1/".

3

and considering the

(iv) If and



You may prove the same result by considering the cnose to tail' addition of the
vectors representing the n nth roots.

EXAMPLE 3.9 Represent 2 — 2j and its five fifth roots on an Argand diagram.

SOLUTION

Their arguments are

or (taking principal arguments in degrees) —9°, 63°, 135°, —153°, —81°.

The fifth roots are the vertices of a regular pentagon inscribed in the circle
\z = 81'10, as in figure 3.12. The sum of these five fifth roots is 0.

Figure 3.12
55

Since 2-2} = 81/2

81/10«1.23.

, the fifth roots all have modulus

Then the sum of these n nth roots of w is

You may also express these n roots as a, aco, aco2, ..., acon 1 where

and

3
The argument of z is 9 = As k can take the values 0, 1, 2, ..., n — 1,

this gives n distinct complex numbers z, and (by the same argument as for the
roots of unity) there are no others.

Therefore the non-zero complex number w = s(cos <p + j sin <p) has precisely n

different nth roots. These are

where k = 0, 1, 2, ..., n — 1.



EXAMPLE 3.10

Figure 3.12 is typical of the general case: the n nth roots of z are represented by
the vertices of a regular n-gon inscribed in the circle with centre O and radius
z\ . This can be useful when dealing with the geometry of regular polygons.

The vertices A0, A1? ..., An_i of a regular n-gon lie on a circle of unit radius with
centre O. The point P is such that OP = 3OA0-

Prove that (PA0)2 + (PAJ2 H h (PA^)2 = lOn.

SOLUTION

Let

the complex numbers of for r = 0, 1, ..., n — 1, and P represents 3. Therefore

(PAr)
2 = | a/ - 3|2 = (of - 3)(a/ - 3)* = (of - 3)(a/~r - 3)

H o T o H—r i rv
= (D — 3(D — 3(D + 9

= 10 - 3a/ - 3a/~r, since con = 1.

When this expression is summed from r = 0 t o r = n — 1 the first term gives lOn
and each of the two sums involving co is zero, since 1 + co + co2 + • • • + (on~l = 0.
This proves the required result.

If iv = s(cos (j) + j sin (j)} then wm = sm(cos mcj) + j sin mcj)} for all integers m by
de Moivre's theorem.

The complex number wm has the n nth roots

to mean this nth root of wm. This definition ensures that de Moivre's theorem is

also true for rational powers, since

Explain the fallacy in the following argument:

But j2 = -1. Therefore 1 = -1.
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One of these is sm/n , and the notation wm'n is used

3 

Express 81/10

correct to 2 decimal places.

in the form x + yj, giving x and y

an nth root of unity. Then the vertices Ar represent

ACTIVITY 3.13
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1 Find both square roots of — 7 + 5j, giving your answers in the form x + y]

with x and y correct to 2 decimal places.

2 Find the four fourth roots of —4, giving your answers in the form x + y],

and show them on an Argand diagram.

3 One fourth root of w is 2 + 3j. Find w and its other fourth roots, and
represent all five points on an Argand diagram.

4 Represent the five solutions of the equation (z — 3j)5 = 32 on an Argand
diagram.

5 A regular heptagon (seven sides) on an Argand diagram has centre — 1 + 3j

and one vertex at 2 + 3j. Write down the equation whose solutions are
represented by the vertices of this heptagon.

6 One of the nth roots of w is a. Prove that the other roots are aco, aco2, ...,

aa)n~l where 

of w is zero.

7 The nth roots of w are represented by vectors on an Argand diagram, with
wl'n as a position vector and with each subsequent vector added to its
predecessor. Describe the figure which is formed, and deduce again that the
sum of all the nth roots is zero.

8 The vertices A1? A2, A3, A4, A5 of a regular pentagon lie on a circle of unit

radius with centre at the point O. A! is the mid-point of OP. Prove that

(i) PAi x PA2 x PA3 x PA4 x PA5 = 31

( i i i ) AiA2 x AiA3 x A^4 x A^ = 5.

9 The fourth roots of —64 are a l5 a2, a3, a4, and these complex numbers are
represented by points A1? A2, A3, A4 on an Argand diagram.

(i) Express a1? a2, a3, a4, in the form a + bj.

(i i) Draw A! A2A3A4 on an Argand diagram.

With /? = \/3 + j, the complex numbers o^/?, a2/?, a3/?, a4/? are represented
by points B1? B2, B3, B4 on the Argand diagram.

( i i i ) Describe in detail how A!A2A3A4 may be transformed geometrically into
B!B2B3B4. Hence show that B!B2B3B4 is a square, and state the length of
a side of this square. Draw the square B!B2B3B4 on your diagram.

(iv) The complex numbers o^/?, a2/?, a3/?, a4/? are the fourth roots of a
complex number w. Find w in the form a + bj.

[MEI, part]
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Deduce that the sum of all the nth roots

EXERCISE 3I



10 (i) Express e^ and e ]0 in the form a + jfc, and show that

(ii) Find the sixth roots of 8j in the form re^ , where r > 0 and —n < 9 < n.
Illustrate these roots on an Argand diagram.

( i i i ) Show that two of these sixth roots have the form m + jn, where m and n
are integers.

of the real number p and the six possible values of a satisfying

[MEI]

12 (i) By considering the solutions of the equation zn — 1 = 0 prove that

(z - co)(z - co2)(z -co3)...(z- a/'1) = zn~l + zn~2 + • • • + z + 1,

where

(ii) There are n points equally spaced around the circumference of a unit
circle. Prove that the product of the distances from one of these points
to each of the others is n. (Question 8 part ( i i i ) is the case n = 5.)

( i i i ) By finding expressions for the distances in (ii), deduce that
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13 Find the following in polar form.

(iv) Given that = 8j, show that w = p( 1 + j cot a), stating the value

3

(ii) Solve the equation z5 + 32 = 0, giving the roots in the form reF (where
r > 0 and —n < a < n). Illustrate the roots on an Argand diagram.

(iii) If + 32 = 0, show that w has the form (1 — jtan/?), and

state the four possible values of 6 in the interval

On a separate Argand diagram, illustrate the four possible values of w.
[MEI]

11 (i) Express ej/c(9 and e ]W in the form a + jb> and show that



14 (i) Find (j1/2)3 and (j3)1/2. Which of these is j3/2?
(i i) Find (J1/3)2 and (J2)1/3.
( i i i ) Find a condition involving m and arg w which ensures that

(w
i/nr = (wm)i/n.

15 (i) Express e^ and e"* in the form a + jb, and show that

e2^ - 1 = 2jeje sin 9.

Series C and S are defined by

C = cos 9 + cos 39 + cos 50 H h cos (2w - 1)9

S = sin 0 + sin 30 +sin 50 H hs in(2n- 1)9

where n is a positive integer and 0 < 9 <

(i i) Show that C + jS is a geometric series, and write down the sum of this

series.

( i i i ) Show that |C + jS|

(iv) Find C and S.

The points A0, A1? A2, A3, A4, A5, A6 in the Argand diagram correspond to

complex numbers z0> z\y z2> ^3> ^4> ^s> %6 where ZQ = 0 and
Zi = cos y 7i + j sin y 7i. The points are the vertices of a regular heptagon with
sides of length 1, as shown in the diagram below.

(v) Explain why z

Hence, or otherwise, show that arg(zn) =±-nnforn= 1, 2, 3, 4, 5, 6.
[MEI]

16 The Polish mathematician Hoe'ne Wronski (1778-1853) once wrote that
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3

, and find arg(C + jS).

Was Wronski wrong?



Geometrical uses of complex numbers

Your study of complex numbers started in AS Further Pure Mathematics (FP1)
with their origin in algebra, in connection with the solution of polynomial
equations. Then the simple idea of representing a complex number as a point
or a vector in the Argand diagram soon made it possible for you to use
complex numbers in geometry too. Some of these geometrical applications,
such as the use of mid-points, other points of subdivision, centroids, and
enlargements, can be handled equally well by two-dimensional vector methods.
But with other problems, especially those involving rotations or similarity,
complex number methods are especially effective. For example, you have seen
in the previous section some fruitful links between regular polygons and the
complex roots of unity.

Much of the geometrical power of complex numbers comes from the crucial
result about the multiplication of complex numbers in polar form: 'multiply the
moduli, add the arguments'. This means that the effect of multiplying a complex
number z by a complex number /I is to turn the vector z in an Argand diagram
through the angle arg /I anticlockwise and stretch it by the scale factor |/l| to give
the vector Az.

In particular, if A, B, C represent the numbers a, by c in an Argand diagram,
then BA represents the complex number a — by while BC represents c — b
(see figure 3.13). Therefore

then angle ABC = arg A = arg

Angle ABC here means the anticlockwise angle through which BC has to be
turned to bring it into line with BA.

Figure 3.13

Prove the same result by starting with arg = arg (a- b) -arg(c- b).
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EXAMPLE 3.11 Find the locus of points z for which arg

SOLUTION

Let A, B, P be the points representing 2j, — 3, z respectively.

The given condition shows that the direction of

direction of BP ( = z + 3), in the anticlockwise sense. Therefore ZAPB =

so (using the converse of the 'angles in the same segment' circle property) P lies

on the arc of the circle with end points A and B as shown.

Figure 3.14

Find in a similar form the condition for P to lie on the other arc of this circle.

EXAMPLE 3.12 Two similar figures are directly similar if corresponding points moving round

the two figures go in the same sense, either both clockwise or both
anticlockwise. Find a condition for two triangles in an Argand diagram to be

directly similar.

SOLUTION

Let A, B, C, D, E, F be the points representing a, &, c, d> e, f (see figure 3.15).

Then triangles ABC, DEF are directly similar if and only if

and angle ABC = angle DEF,

both angles being in the same sense because the similarity is direct.
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i is ahead of the

and

3
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Figure 3.15

Note

The shape of these triangles is determined by the single complex number

, and both triangles are similar to the triangle AOI with vertices

A, 0, 1 (see figure 3.15). When dealing with a set of similar triangles it can be

helpful to make use of AOI as the 'standard representative' of the whole family of

triangles with this shape.

Prove that the condition for two triangles ABC, DEF to have opposite similarity
(where corresponding points move in opposite senses round the two triangles) is

EXAMPLE 3.13 Squares whose centres are P, Q, R are drawn outwards on the sides BC, CA, AB
respectively of a triangle ABC. Prove that AP and QR are equal and mutually
perpendicular.

SOLUTION

Working on an Argand diagram, let the points A, B, . . . correspond to the
complex numbers a, fc, ... as usual (see figure 3.16).
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Therefore and arg and soarg
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Figure 3.16

The first step is to find p in terms of b and c: two ways of doing this are given.

(i) If D is the vertex opposite B in the square with centre P then CD is
obtained by turning CB through a right angle anticlockwise, and so
d — c = j(b — c). Therefore, since P is the mid-point of BD,

(ii) Alternatively, triangles BCP, CAQ, ABR are all right-angled isosceles
triangles, and therefore all similar to the 'standard representative' triangle

AOI with vertices

Hence

as before.

Therefore RQ is obtained by turning AP through a right angle.
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2(q — r) = c + a + }(c — a) — a — b — }(a — b)

= c- b + ](b+c) -2ja

= }(b+c + ](b-c}-2a)

= 2j(p - a).

It is now easy to complete the proof:

Similarly

and

from which

3



1 Explain the following construction for multiplication of given numbers Zi

and z2 in an Argand diagram.

Draw the triangle with vertices 0, 1, z\. Then construct the directly similar
triangle which has vertices 0 and z2 corresponding to vertices 0 and 1 of the

original triangle. The third vertex of the constructed triangle is z\z2.

Illustrate this by doing the construction for z\ = 2 + j, z2 = 3 + 4j. Then do
the same with z\ and z2 interchanged.

2 Find the locus of points z for which

(Compare this with Example 3.11.)

3 On a single diagram draw and identify the locus of points z for which

= a where a is

4 Prove that arg

Investigate whether the converse is true.

5 Given that z\ = 3 + 4j, and z2 = — 3 + 2j, illustrate the following loci or
regions on separate Argand diagrams. For parts (i) to (v) you are not

required to give the cartesian equation of the loci.
(i) 
(ii)
( i i i )
(iv)

(vi) Find the cartesian equation of the locus given by |z — z\ \ = 2 z — z2\

and draw a sketch to illustrate it.
[MEI]
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6 Let A, B, C, D, E, F be the points representing a, &, c, d, e, f in an Argand
diagram. Prove that triangles ABC, DEF are directly similar if and only if

ae + bf + cd = af + bd + ce.

Find in a similar form the condition for these triangles to have opposite
similarity.

7 The points A, B, C in an Argand diagram represent the complex numbers a,
by Cy and a = (1 — X)b + Xc. Prove that if X is real then A lies on BC and
divides BC in the ratio X : 1 — /I, but if X is complex then, in triangle ABC,
AB : BC = |/l| : 1 and angle ABC = arg/L

and z is any vector, how are the vectors z and

(DZ related geometrically?
(i i) If 2 + 3j and 4 + 7j are two vertices of an equilateral triangle, find both

possible positions for the third vertex.

9 (i) If the points a and b are two vertices of an equilateral triangle, prove
that the third vertex is either b + co(b — a) or b + a)2(b — a), where co is
as in Question 8.

(i i) Show that these expressions can be written as — coa — a)2b and
-co2a — cob respectively.

( i i i ) Deduce that the triangle with vertices z\y z2, z3 is equilateral if and only if

Zi + (DZ2 + O)2z3 = 0 or z\-\- (D2z2 + coz3 = 0.

(iv) Deduce that a necessary and sufficient condition for the points z1? z2, z3

to form an equilateral triangle is

10 The points A, B, C in an Argand diagram represent the complex numbers a,
by C; M is the mid-point of AB, and G is the point dividing the median

AM in the ratio 2 :1 . Show that G represents the number

and deduce from the symmetry of this expression that G also lies on the
median through B and the median through C. (A median of a triangle is a
line joining a vertex to the mid-point of the opposite side; the point G at
which the medians meet is called the centroid of the triangle.)
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8 (i) If



11 Directly similar triangles BCL, CAM, ABN are drawn on the sides of a
triangle ABC. Prove that triangles ABC, LMN have the same centroid.

12 (i) On the sides of any triangle, equilateral triangles are drawn, pointing
outward. Using Question 9 part (ii), prove that the centroids of these
equilateral triangles form another equilateral triangle. This is Napoleon's
theorem; it was attributed to the Emperor within a few years of his
death, and he was a good enough mathematician to have discovered it.

(ii) Prove that the theorem is still true if the equilateral triangles are drawn
inward rather than outward.

( i i i ) Prove that the triangle of centroids in part (i), the corresponding triangle
in part (ii), and the original triangle all have the same centroid.

13 (i) Squares whose centres are P, Q, R, S are drawn outwards on the sides
AB, BC, CD, DA of a general quadrilateral ABCD. Prove that PR and
QS are equal and mutually perpendicular.

(ii) What difference does it make if all the squares are drawn inwards?
( i i i ) Explain how the result of Example 3.13 can be deduced from part (i).

INVESTIGATION

Roberts' theorem

Figure 3.17 shows four rods AB, BC, CD, DA which are flexibly linked. Rod AD
is fixed (sometimes the points A and D are just fixed without being joined by a
rod), and a triangle BCP is attached to rod BC.
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Figure 3.17

This mechanism is called a four-bar linkage: by adjusting the lengths of the rods
and the shape of the triangle it is possible to achieve many different paths for the
point P as the mechanism moves. Four-bar linkages are used to control the
motion of parts of many machines (a good collection of examples is given in
Mathematics Meets Technology by Brian Bolt, CUP, 1991). In 1878 the English
engineer Richard Roberts proved that any motion of P which can be produced
by a particular four-bar linkage can also be produced by two other linkages; this
is useful since the other linkages may be more convenient to fit into the
machine.

3



To prove Roberts' theorem you complete the parallelograms ABPE, DCPF, then
construct triangles EPG, PFH directly similar to triangle BCP, and finally
complete parallelogram GPHK (see figure 3.18).

Putting the figure on an Argand diagram, let AB, BC, CD represent the
complex numbers u, v, w respectively, and let the shape of triangle BCP be
defined by the complex number /I, so that BP = Xv.

Copy figure 3.18 and mark on each edge the complex number it represents.

Figure 3.18

Deduce that AK represents A(u-\- v + w), and hence that K is a fixed point. This
shows that the linkage AEGK with triangle EGP and linkage DFHK with triangle
FHP also give the same motion for P.
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KEY POINTS
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3 1 The principal argument of z is the angle 9, — n < 9 < n, such that
cos 9: sin 9:1 = x:y: r, where r = \z\.

2 The polar form of z is z = r(cos 0 + j sin 9).

3 Multiplication in polar form - multiply the moduli, add the arguments:

ZiZ2 = rlr2[cos(9l + 92)+jsin(9l + 92)]

4 Division in polar form - divide the moduli, subtract the arguments:

5 de Moivre's theorem: (cos 9 + j sin 9)n = cos n9 + j sin n9, where n is rational.

6 If z = cos 9 + j sin 0 then

7

8 The equation zn = 1 has precisely n roots. These are

The sum of all these nth roots of unity is zero.

9 The non-zero complex number s(cos (j) + j sin <p) has precisely n different
nth roots. These are

The sum of these n roots is zero, and in an Argand diagram they are the
vertices of a regular n-gon with centre O.

where k = 0, 1, 2, ..., n — 1.

10 In an Argand diagram if = /I then

angle ABC = arg X = arg

and triangle ABC is similar to triangle AOI with vertices /I, 0, 1.



Power series

If I feel unhappy, I do mathematics to become happy.
If I am happy, I do mathematics to keep happy.

Alfred Renyi, 1921-1970

Figure 4.1

What do you notice about the graphs shown in figure 4.1? What questions do
the graphs provoke?

Polynomial approximations

Since polynomial functions are easy to evaluate, to differentiate or to integrate they

can be useful as approximations to more complicated functions. Here is one way of

finding such approximations, using the exponential function as an example.

If you want to use a straight line to approximate the

curve with equation y = e*, there are many straight

lines you could choose. Even restricting your choice

to those which are tangents, there are infinitely

many lines you could choose. The most obvious

straight line to use is the tangent to the curve at the

point where x = 0, as illustrated in figure 4.2.

Suppose the tangent has equation

y = OQ + air, then: Figure 4.2

©

(2)

line and curve cut the y axis at the same point => a0 = e° = 1

line and curve have the same gradient when x = 0 => a\ = 1 since
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(e*) = e*, which is 1 when x = 0.



So the linear approximation for e* is 1 + x.

But straight lines are straight, and are not really

suitable for approximating to curves over any

distance. Using the quadratic equation,

to approximate to y = e*, as shown in figure 4.3,

requires as before, that:

© both curves cut the y axis at the

same point => a0 = e° = 1

Figure 4.3

(2) both curves have the same gradient when x = 0 = > 0 1 = e ° = l

but now: (3) both curves must have the same second derivative when x = 0.

(e*) = e*, which is 1 when x = 0, and

(3) => 202 = 1 => 02 = j. So the quadratic approximation for ex is 1 + x + jx2.

Extending this to finding the cubic 00 + a\x + a2x
2 + a3x

3 that approximates to

e* brings in the additional requirement that the cubic and e* have the same third

derivative at x = 0. Now •(0n + fliX+ floX + a^x ) = 3 x 2a^ = 3!a3 and

(e*) = ex = 1 when x = 0 so you require a3 =

for ex is

Figure 4.4 shows the graph of y = ex

together with the graphs of the linear,

quadratic and cubic approximations

you have just constructed. The graph

shows that, for positive x, the accuracy

of the approximation improves as more

terms are used. Using more terms also

improves the accuracy when x is negative,

though the diagram alone does not

justify that claim.

70 Figure 4.4

4

y = OQ + aix + a2x
2

(0o + a\x + a2x
2) = 202>Since

The cubic approximation
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Putting all these together produces the approximation

This is known as the Madaurin expansion for f(x) as far as the term in xn
y or the

nth Madaurin approximation for f(x).

and so on. Generalising:

The last equality on each line gives

and

4
The cubic approximation for e* is 1 + x -f Write down a cubic

approximation for e x. Multiply the two approximations together and comment
on your answer.

Show that the next (i.e. the fourth degree) approximation for

Hence show that and

evaluate this approximation correct to 3 decimal places.

This is typical of the general case. Suppose f(x) is a function, that its first n
derivatives exist at x = 0, and that you want to find a polynomial p(x) of degree
n which has the same values as f(x) and its first n derivatives at x = 0. Then

Solving these n + 1 equations gives the n + 1
coefficients needed for a polynomial of degree n.

Note the symbol for the
nth derivative of p(jc),

evaluated here at x = 0.

then 

ACTIVITIY 4.1

ACTIVITIY 4.2

and



EXAMPLE 4.1 Find the Maclaurin expansion for (1 — x) 1 as far as xn.

SOLUTION

f(x) = (l-xr
l

f(x) = (l-x)-2

f " (x)=2( l -x) - 3

f (3)W

f(4)M
= 6(i -*r4

= 24(l-xr5

f(B)(*) = «!(l-x)"("+1)

f(0)

f'(0)

f"(0)

f(3 '(0)

f(4 '(0)

= 1

= 1

= 2

= 6

= 24

f(n)(0) = «!

Then (1 - x)"1 w 1 + x + x2 + x3 + x4 H h xn.

1 Find the Maclaurin expansion up to the term in x4 for each of these
functions.
(i) sinx (ii) cosx (iii) tanx

2 These spreadsheet entries show the start of a method for calculating e*.

1
2

3

4

5

A

1

0.5

1

= SUM(A3:K3)

B

= Al + 1

= A2

= A3 * B2/A1

Copy them into the first two columns of a spreadsheet. Then drag the
formulae in cells Bl to B3 to cells Cl to C3, Dl to D3,..., Kl to K3. The
number in cell A2 is the value of x: try changing it. Cell A5 contains the sum
of the numbers in cells A3 to K3. Explain why this is an approximation to e*.

3 Use a Maclaurin approximation to calculate to 5 decimal places.

4 Use the cubic approximation to sin x to show that the positive root of
sin x = x2 is approximately \f\5 — 3.

5 The third Maclaurin approximation to f(x) is 1 — ̂ x2 + |-x3. Write down
the values of f7(0), f"(0), f (3)(0). Sketch the graph of y = f(x) near x = 0.
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Letf(x) = (1 -x)"1.

4

Tabulate f(jc) and its
derivatives and

evaluate them at x = 0.

EXERCISE 4A



(i) E'n(x)=En.l(x)
(i i) jEn(x)dx = En+1(x) + c.

Explain how these results are linked to properties of e*.

7 An approximate rule used by builders to find the length, c, of a circular arc

ABC is

where a and b are as shown in the diagram.

(i i) Using the cubic approximation to sinx, show that 8b — a = 6r9. Hence
verify the rule.

( i i i ) Find the percentage error caused by using this rule when

8 A surveyor measures a length AB on sloping ground. Before he plots A and
B on the map he must find the horizontal distance AC between them.

An approximate rule used by surveyors for reducing a sloping length of
100 metres to its horizontal equivalent is 'Square the number of degrees in

the slope, multiply by ly and obtain the correction in centimetres.'

If the slope 9° equals a radians, show that the correction is about SOOOa2

centimetres. Show that the rule is approximately correct for gentle slopes.
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(i) If O is the centre of the circle, show that b = 2rsin 

6 IfEB(x) = show that 4

and a = 2rsin0.



answer. (It is not possible to find

9 Write down the Maclaurin series for 
(i) as far as x6

(ii) as far as x8.

It can be shown that e 2* always lies between these two approximations.

Use them to estimate dx and to establish error bounds for your

dx explicitly, but finding good

approximations for integrals such as dx was an essential part of the

construction of the Normal distribution tables, a key tool in statistics.)

Maclaurin series

At this stage it is not possible to say much about the accuracy of these Maclaurin
approximations. But the nth Maclaurin expansion for (1 — x)~l, obtained in
Example 4.1, is the geometric progression 1 + x + x2 + x3 + x4 + • • • + xn; if
you let n tend to infinity you obtain the infinite geometric series

1 + x + x2 + x3 + x4 + • • • which, if x < 1, converges to

known as its sum to infinity.

This means that, provided \x\ < 1, by taking sufficiently many terms you can
make the Maclaurin expansion of (1 — x)~l as close to (1 — x)~l as you like. But
the geometric series 1 + x + x2 + x3 + x4 + • • • does not converge i f \ x ^ 1.

Generalising these ideas: if the function f(x) and all its derivatives exist at x = 0,
then the infinite series

is known as the Maclaurin series for f(x). If the sum of this series up to and
including the term in xn (i.e. the sum of the first n + 1 terms) tends to a limit as
n tends to infinity, and this limit is f(x), you say that the expansion converges to
f(x). For some functions, for example (1 — x ) ~ l

y the series only converges for a
limited range of values of x; these are described as the values for which the series
is valid. A more detailed examination of the validity of the Maclaurin series is
beyond the scope of this book; for now the values of x for which the common
Maclaurin series are valid are merely stated, without proof.

This chapter started by developing Maclaurin expansions for e*. Since e* and all
its derivatives are identical, and e* = 1 when x = 0, the Maclaurin series for e* is

This series is valid for all x.
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EXAMPLE 4.2 Find the Maclaurin series for sin x.

SOLUTION

Let f(x) = sin x.

f(x) = sin x

f'(x) = cosx

f"(x) = — sinx

f(3\x) = -cosx

f (4)(x) = sinx

f<2r+1>(*) = (-!)' cos*

f(2r+2)W = (-l)r+1sinx

f(2r+3)(*) = (-l)r+1cosx

f(2r+4)(*) = (-l) r+2sinx

f(0)

f(0)

f'(0)

= 0

= 1
= 0

f(3)(0) = -1

f(4)(0) = 0

f(2'+1)(0) = (-!)'

f(2r+2)(0) =0

f(2?-+3)(0) = (-l)r+1

f(2r+4)(0) = 0

Tabulate f(X) and its
derivatives and evaluate

them at x = 0.

(This series is valid for all values of x.)

Note the connection
between these terms
and the fact that sinx
is an odd function.

Show that the Maclaurin series for cos x is

(This series is also valid for all x. Notice that the first two terms here form the

familiar approximation for cos x when x is small, and that, as you might expect,

the series for cos x is the same as the series obtained by differentiating the sin x

series term by term.)

Show that the Maclaurin series for (1 + x)n is

i.e. the familiar binomial series for (1 + x)n.

If n is a positive integer: the series terminates after n+l terms, and is valid

for all x.

If n is not a positive integer: the series is valid for \x\ < 1, but not valid for

\x\ > 1; the series is also valid for x = 1 if n > — 1,

and for x = — 1 if n > 0.

75

4

Then sin x

ACTIVITIY 4.3

ACTIVITIY 4.4



Figure 4.5 shows the graph of the function (1 + x) 2 and several successive
Maclaurin approximations. It illustrates the fact that the approximations
converge on (1 + x)~J if \x < 1, but not if x > 1. At first sight the graph may
appear to show that successive approximations also converge when x < — 1; but
they cannot be converging on (1 + x)~, which is undefined for x ^ —1.

a first approximation
b second approximation
c third approximation
d fourth approximation
e fifth approximation

Figure 4.5

1 (i) Explain why it is not possible to find Maclaurin expansions for In x.

(ii) (a) Show that the Maclaurin series for ln(l + x) is

(b) This series is valid for — 1 < x ^ 1 only; by drawing graphs of
y = In (1 + x) and several successive approximations show that this
is plausible.

(This series was first found by Nicolaus Mercator (1620-87), who lived
for many years in London, though he was born in Denmark.)

2 A graphic calculator or graph-drawing software will be useful in this question.

(i) Draw a graph of y = sinx. On the same axes draw graphs of the first
few Maclaurin approximations to sin x.

(ii) Repeat (i) for (a) cosx (b) (1 + x)"1 (c) (1+x)0 '5.

3 Find the Maclaurin expansion off(x) = as far as the term in x .
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Show that no even powers of x can occur in the full expansion.

[Hint for the last part: Show that f(x) — f(0) is an odd function.]

4
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4 In this question give all numerical answers to 4 decimal places.

(i) Put x = 1 in the expansion

and calculate an estimate of In 2. (Approximately 1000 terms would be

needed to obtain In 2 correct to 3 decimal places by this method.)

(i i) Show that In 2 = — In (1 — |) and hence estimate In 2 by summing six

terms.

( i i i ) Write down the series for In (1 + x) — In (1 — x) as far as the first three

non-zero terms and estimate In 2 by summing these terms using a

suitable value of x.

5 (i) Given that f(x) = arctan (1 + x), find f ' ( x ) and f " ( x ) .

(i i) Find the Maclaurin series for arctan (1 + x) as far as the term in x2.

( i i i ) Use this Maclaurin series to find an approximate value of

arctan (1 + x ) dx, giving your answer to 3 decimal places.

[MEI, part]

6 A curve passes through the point (0, 2); its gradient is given by the

= 1 — xy. Assume that the equation of this curve

can be expressed as the Maclaurin series

y = a0 + UiX + a2x
2 + a3x

3 + a4x
4 + • • •.

(i) Find a0 and show that

#! + 2a2x + 3a3x
2 + 4a4x

3 + • • • = 1 — 2x — diX2 — a2x
3 — a3x

4 — • • •.

(i i) Equate coefficients to find the first seven terms of the Maclaurin series.

( i i i ) Draw graphs to compare the solution given by these seven terms with a

solution generated (step by step) on a computer.

7 (i) Write down the Maclaurin expansions of

(a) cos 9 (b) sin 9 (c) cos 9 + j sin 0,

giving series (c) in ascending powers of 9.

(i i) Substitute x = j9 in the Maclaurin series for e* and simplify the terms.

( i i i ) Show that the series in parts (i)(c) and (ii) are the same.

(This confirms that the definition e^ = cos 9 + j sin 9 given on page 46 is

consistent with the Maclaurin series of the functions involved.)

8 In this question yn and an are used to denote f^n\x) and f^(0) respectively.

(i) Let f(x) = arcsinx. Show that (1 — x2)yi2 = 1 and (1 — X2)y2 — xyi = 0.

(i i) Find a\ and a2.

( i i i ) Prove by induction that (1 — x2)yn+2 — (2n + \)xyn+i — rfyn = 0, and

deduce that an+2 = n an.

(iv) Find the Maclaurin expansion of arcsin xy giving the first three non-zero

terms and the general term. 77

differential equation

4



EXAMPLE 4.3

Alternative approaches

Sometimes finding the coefficients of a Maclaurin series by repeated
differentiation can be very laborious. As shown in the next example, the
problem can be eased if you can express a derivative in terms of earlier
derivatives, or the original function.

Find the first four non-zero terms of the Maclaurin series for e2x sin 3x.

Thus

Sometimes a Maclaurin series can be found by adapting one or more known
Maclaurin series. Some such methods are indicated in the next activity. You may
well wonder whether the processes used are justifiable. Is it legitimate (for
example) to integrate (or differentiate) an infinite series term by term? Can you
form the product of two infinite series by multiplying terms? Is the series
obtained identical to the series that would have been obtained by evaluating the
derivatives? Answering these important questions in detail is beyond the scope
of this book, though generally the answer is cYes, subject to certain conditions'.

Try out the following methods and explain why they work. How would you
obtain further terms of the required series?

(i) The Maclaurin series for In (1 + x) can be found by integrating the terms of
the binomial series for (1 + x)"1. Why is the integration constant zero?

(i i) The start of the Maclaurin series for - can be found by multiplying

together the first four terms of the Maclaurin series for ex and ( l + x ) 1 and
discarding all terms in x4 and higher powers.
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SOLUTION

Let

Then

and

f(x) = e x sin 3x

f'(x) = 2c2x sin 3x + 3c2x cos 3x

= 2f(x) + 3e2x cos 3x

f(0) = 0.

f7(0) = 3

f"(x) = 2f7(x) + 6e2x cos 3x - 9e2x sin 3x

= 2ff(x) + 2(f7(x) - 2f(x)) - 9f(x)

= 4f7(x) - 13f(x)

Then f (3)(x) = 4f"(x) - I3f'(x)

and f (4)(x) = 4f(3)(x) - 13f/7(x), etc.

f"(0) = 12.

f(3)(0) = 48-39 = 9

f(4)(0) = 36- 156 = -120.

Expressing f "(jc) in terms
of f (jc) and f(jc) simplifies

further differentiation.

ACTIVITIY 4.5



( i i i ) The first few terms of the Maclaurin series for sccx can be found from the
first three terms of the Maclaurin series for (1 + y}~1 where

Taylor approximations

All Maclaurin expansions are 'centred' on x = 0. But it is possible to form
expansions centred elsewhere:

let g(/z) = f(a + h) where a is the constant x — ft;

then g'(ft) = f ' ( a + ft), g"(ft) = f " ( a + ft), etc.,

and g(0) = f(a), g'(0) = f7(a), g/7(0) = f"(a), etc. so that

Explain the connection between the first Taylor approximation for f(x) and the
Newton-Raphson method of approximating to the root of the equation

f(x) = 0.

Historical note

The Taylor approximations were discovered or rediscovered in various forms by several

mathematicians in the seventeenth and eighteenth centuries. They were familiar to Scotsman James

Gregory (1638-1675), though Englishman Brook Taylor (1685-1731) was the first to publish an account

of them, in 1715. In 1742 Colin Maclaurin (1698-1745), Gregory's successor as professor at Edinburgh,

published his expansion, stating that it occurred as a special case of Taylor's result; for some reason it

has been credited to him as a separate theorem.
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These two formulae are alternative versions of the nth Taylor approximation for
f(x) centred on x = a. They are also known as Taylor polynomials. (A Maclaurin
approximation is a special case of a Taylor approximation, obtained by putting

a = 0.)

This may be expressed in either of the following two ways:

or equivalently

ACTIVITIY 4.6



1 Use known Maclaurin series to find the Maclaurin series for each of the
following functions as far as the term in x4.

(i) sin3x (ii) cos2x

( i i i ) sin2 x (iv) l n ( l+s inx)
(v) e~xsinx (vi) esin*

[MEI, part]

(This is known as Gregory's series, after the Scottish mathematician

James Gregory; who published it in 1668, well before Newton or Leibniz
introduced calculus. The series is valid for x < 1.)

(ii) By putting x = 1 show that

(This is known as Leibniz's series. It converges very slowly.)

( i i i ) Show that

(iv) Use Machin's formula together with Gregory's series to find the value of
7i to 5 decimal places. (In 1873 William Shanks used this method to
calculate n to 707 decimal places, but he made a mistake in the 528th
place, not discovered until 1946!)

(i) Sketch the graph of y = arccos (2x).

(ii) Differentiate arccos (2x) with respect to x.

( i i i ) Use integration by parts to find J arccos (2x) dx.

(iv) By first expanding (1 — 4x2)~~, find the series expansion of arccos (2x)

as far as the term in x5.

[MEI, part]
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2 (i) Find

(ii) By expanding (1 — 4x2) 2 and integrating term by term, or otherwise,

find the series expansion for arcsin(2x), when \x < |, as far as the term
in x7.

3 (i) By integrating and its Maclaurin expansion, show that the

Maclaurin series for arctan x is

(a)

(b)

(known as Euler's formula for n)

(known as Machin's formula).

arctan

arctan

arctan

arctan

4

EXERCISE 4C



5 (i) Prove by induction that

Use this result to obtain the Maclaurin series for ex sin x as far as x6.

(i i) Multiply the third Maclaurin approximation for ex by the third

Maclaurin approximation for sin x, and comment on your answer.

( i i i ) Find a Maclaurin approximation for ex cos x by multiplying the third

Maclaurin approximation for ex by the fourth Maclaurin

approximation for cos x, giving as many terms in your answer as you

think justifiable.

6 Let y = arctan xy so that x = tan y.

( i i i ) Use the Maclaurin series for In (1 db t) in ( i i) to obtain again Gregory's

series for arctan x.

A projectile is launched from O with initial velocity

horizontal and vertical axes through O. The path of the projectile may be

modelled in various ways. The table below shows the position (x, y] of the

projectile at time t after launch, as given by two different models. Both

models assume that g (gravitational acceleration) is constant. Use the

Maclaurin expansion for e~kt, where k is constant, to show that the results

given by Model 1 are a special case of the results from Model 2, with k = 0.

Model 1

Model 2

Assumptions about air resistance

There is no air resistance.

Air resistance is proportional to the

velocity (with proportionality

constant k).
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(i) Using cos y and sin/ = prove that

(i i) By solving (i) for y, deduce that y

7 relative to

Position at time t

4



8 The diagram illustrates a Maclaurin expansion. Find it.

(You may assume that 0 < r < 1.)

INVESTIGATION

There are many ways of obtaining sequences of polynomial approximations for

f(x) = sin x, for 0 < x ^ — . Investigate alternative methods such as the following.

(i) Use (a) the linear function which passes through (0, 0) and

(b) the quadratic function which passes through (0,0),

(c) the cubic function which passes through four points on y=f(x);

and so on.
(i i) Use polynomials P(x) which minimise
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(b) the maximum value of | f(x) — P(x)\ in 0

4

and



KEY POINTS

Maclaurin series (You will meet other Maclaurin series in Chapter 6.)

1 General form:

2 Valid for all x:

3 Valid for x < 1:

4 Valid for-1 < x ^ 1:

If n is a positive integer: the series terminates after n + 1 terms, and is valid
for all x.

If n is not a positive integer: the series is valid for \x\ < 1; also for \x\ = 1 if

n ^ — 1; and for x = — 1 if n > 0.
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5 Validity depends on n:

arctan

4



Matrices

By relieving the brain of all unnecessary work, a good notation sets it
free to concentrate on more advanced problems.

AM Whitehead, 1861-1947

• that detM is the (signed) area scale factor of the transformation represented

byM

• that a non-singular matrix is a matrix with non-zero determinant

• to find the inverse of a non-singular 2 x 2 matrix M:

• to use matrices to solve simultaneous equations in two unknowns.

In this chapter you will extend your knowledge of matrices so that you can also work

with 3 x 3 matrices and interpret the results. Some of this work was hinted at in FPL
84

5

Figure 5.1

Transformation M with matrix M maps the cube, C, to the parallelepiped, P. Is

there a transformation that maps P to C? If so, what is its matrix? These are

some of the questions dealt with in this chapter.

In your work on matrices in AS Further Pure Mathematics (FP1) you learnt

• to represent a transformation by a matrix

• to multiply matrices

• that matrix multiplication is associative: (PQ)R = P(QR)

that

respectively

and are the 2 x 2 and 3 x 3 identity matrices

to evaluate the determinant of the 2 x 2 matrix M =

5



The determinant of a 3 x 3 matrix

known as the expansion of the determinant by the first column. Notice that a\ is

multiplied by what is known as its minor, the 2 x 2 determinant

Alternatively you may expand the determinant by the second column:

Other

or by the third column:

The signs attached to the minors alternate as shown:

A minor together with its correct sign is known as a cofactor and is denoted by the
corresponding capital letter; for example the cofactor of a3 is A3. This means that
the expansion by the first column, say, can be written as a\A\ + a2A2 + %A3.

It is a fairly easy but somewhat tedious task to show that all three expressions
simplify to

Uib2c3 + a2b3Ci + d^b\C2 — a^Ci — Uib3c2 — u2biC3.

or by the second or third row.
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obtained by deleting the row and column containing a\:

minors are defined similarly: the minor of a2 is

5
If M is the 3 x 3 matrix then the determinant of M is defined by

The following are alternative symbols for detM:

You will see later that you may also expand by the first row:

or or



EXAMPLE 5.1

Evaluate the determinant

SOLUTION

Expanding by the first column gives

= 2 x (2 x (-2) - 3 x 5 ) - 7 x ( 3 x (-2) - (-1) x 5)
+ 4 x (3 x 3-(-l) x 2)

= 2 x (-19)-7 x ( - i ) + 4 x 11

= 13.

The following method of expanding the 3 x 3 determinant

detM = was devised by P.F. Sarrus, 1798-1861. Copy the first and

second rows below the third row; form diagonal products and sum them, as
shown.

Justify Sarrus' method and use it to evaluate

Historical note

Although the early work on determinants was done by Vandermonde around 1776, the word

'determinant' was coined by Cauchy in 1815, and the vertical line notation was introduced in 1841 by

Arthur Cayley, a pioneer in the study of matrices.

Some properties of determinants are suggested in Questions 2 to 5 of
Exercise 5A. These properties will be developed in the next section.
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ACTIVITIY 55.1



1 Evaluate these determinants.

evaluate detM and detN, det(MN), and comment on your answers.

6 Show that x = 1 is one root of the equation

the other roots.

= 0, and find

Properties of determinants

1 Swapping two columns of a determinant reverses its sign.

Since , and the cofactors of a\, a2 and a3 in

are 2 x 2 determinants, swapping the second and third columns

of the 3 x 3 determinant reverses its sign. Thus |a b c| = —|a c b|.
A similar argument applies if you swap a different pair of columns. 87

5

2 Evaluate these determinants. What do you notice?

5 Given that M =

4 Evaluate these determinants. What do you notice?

3 Evaluate these determinants. What do you notice?

and

EXERCISE 5A



5
2 If two columns of a determinant, are identical, = 0.

This follows immediately from Property 1, since swapping those two columns
multiplies by — 1 but without changing anything:

3 Cyclic interchange of the columns of a determinant leaves the value of the

determinant unchanged.
Cyclic interchange of the letters p, q, r gives q, r, p or r, p, q; i.e. the same
letters, in the same order, but starting in a different place. The proof involves
applying Property 1 twice. For example

(swapping the second and third columns)
(swapping the first and third columns).

For the matrix M = |, detM = a\A\ + a2A2 + a3A3 is the

expansion by the first column. Multiplying the elements of a column by the
cofactors of a different column is known as expanding by alien cofactors, as in
a\B\ + a2B2 + a3B3, where the elements of the first column have been multiplied
by the cofactors of the second column.

4 The result of expanding a determinant by alien cofactors is zero.

Attaching the elements of the first column of M = |, to the

cofactors of the second column gives a\B\ + a2B2 + a^B3y which is the first

column expansion of . By Property 2, this is zero, as two columns

are identical. Again, similar arguments apply if you choose different alien
cofactors, or a different column.

5 The determinant of a 3 x 3 matrix is the volume scale factor of the

transformation represented by that matrix.
This property corresponds to the fact that a 2 x 2 determinant is the area
scale factor of the corresponding transformation. Activity 5.2 guides you
towards a proof. Strictly, you should talk about the signed scale factors.

6 The determinant of a product of 3 x 3 square matrices M and N is the product
of the determinants ofM andN: det(MN) = detM x detN.

The transformation M with matrix M = maps the unit cube

with edges i, j and k to the parallelepiped with edges a =

and c = and (signed) volume detM. Transformation M followed by N,
88



as illustrated in figure 5.2, is equivalent to the single transformation NM with
matrix NM and volume scale factor det(NM). It follows that

det(NM) = detN x detM = detM x detN = det(MN).

Figure 5.2

The sign of the determinant of a 3 x 3 matrix M shows whether the vectors
a, b and c (in that order) form a left-handed or a right-handed set, as
illustrated in figure 5.3.

Vectors a, b, c (in
that order) are a
right-handed set.

Vectors i , j ,k (in
that order) are a
right-handed set.

Vectors p, q, r (in
that order) are a
left-handed set.

Figure 5.3

EXAMPLE 5.2 Factorise the determinant

SOLUTION

(The obvious approach is to expand the determinant and then to factorise the
resulting expression, but this expression consists of six terms of the form yz3 and
factorising this is not easy, so an alternative approach is used here.)

Determinant A may be thought of as a polynomial in x (or in y or in z as
appropriate).

If y takes the same value as x the first two columns are identical and then
A = 0. Therefore (x — y) is a factor of A by the factor theorem.
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Similarly (y — z) and (z — x) are also factors of A.

As cyclic interchange of x, y and z leaves both A and (x — y](y — z)(z — x)

unchanged, while non-cyclic interchange reverses the signs of both expressions,
any further factors of A will be symmetrical in x, y and z. Since A is of degree 4
in x, y and z, the remaining factor is of degree 1, and so is of the form

k(x -\-y-\-z) where A: is a constant. Considering the coefficient of x3y in the
expansions of A and in (x — y)(y — z)(z — x)k(x -\-y-\-z) shows that k = — 1.
Therefore A = — (x — y)(y — z)(z — x)(x -\-y-\-z).

(i) (a) Figure 5.4 illustrates a shear parallel to the y axis; the distance each
point moves is p times its x co-ordinate.

(c) Find E3, the matrix that represents the shear parallel to the z axis; the
distance each point moves is r times its y co-ordinate.

(i i) The transformation with matrix M = (a b c)

the unit cube to the parallelepiped P with edges represented by vectors a, b
and c.

(a) Show that with

assuming a\ ^ 0.

(b) Show that with

90

5

Figure 5.4

Show that E! = represents this transformation.

(b) Matrix E2 = represents another shear. Describe this shear.

maps

where

where

assuming

and

ACTIVITY 5.2e



( i i i ) Parallelepiped P' is illustrated in figure 5.5. Assuming that a\y b'2 and c" are
positive, deduce that the shaded area is a\ b'2 and that the volume of P' is

7 / //Uib2c3.

The shaded parallelogram
is in the plane z = 0.

Figure 5.5

(iv) Show that aib'2c" = aib2c$ + a2b$Ci + %&iC2 — a^b2Ci — aib$c2 — a2bic$, the
same expression as given on page 85 for the value of detM.

(If ai = 0 you may use similar methods to change b2 or c2 to 0 instead of a2

in stage (ii)(a), and then proceed as before. If b'2 = 0, E2E!M =

and stage (ii)(b) may be omitted. In both cases the volume can still be calculated,
much as before.)

1 Explain how you can tell by inspection that the following are true.
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(c) Explain why parallelepiped P, with sides a, b and c has the same volume

as the parallelepiped P7 with sides and

5

(iv) (x — 3) is a factor of

EXERCISE 5B



2 (i) Prove that |fca b c| = fc|a b c|, where /c is constant.
(ii) Explain in terms of volumes why multiplying all the elements in the first

column by constant k multiplies the value of the determinant by k.

( i i i ) What happens if you multiply another column by fc?

3 Given that = 43, use the property developed in Question 2 to

evaluate the following without expanding the determinants.

4 (i) Prove that |a+/cb b c| = |a b c , where k is constant.
(ii) Interpret this geometrically in terms of volumes.
( i i i ) Prove that the value of a determinant is unchanged when you add any

multiple of one column to any other column.

5 Use the property developed in Question 4 to evaluate the following.

6 In a Fibonacci sequence the third and subsequent terms satisfy

ur+2 = ur+i + ur. Show that if %, t/2, % , . . . is a Fibonacci sequence then

7 In this question A l 5 A2, etc. represent (as usual) the cofactors of a1? a2, etc.
(i) By considering expanding b b c| by its first column show that

biAi + b2A2 + b3A3 = 0.
(i) Prove that a\C\ + a2C2 + a3C3 = 0.
( i i i ) Write down four other similar expressions which also evaluate to 0.

(Multiplying a column of detM by cofactors belonging to a different

column, and then adding, is known as expanding by alien cofactors. The
result is always zero.)

8 You will need to use the results of Question 7 in this question.
(i) By multiplying out and simplifying

find the inverse of

(ii) Will this method always produce the inverse of a 3 x 3 matrix?
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9 Prove that the area of the triangle with vertices at (xiy y\), (x2, y^), fe, y3) is

and interpret the equation
5

10 Explain why = 0 can be described as a cubic equation.

Show that x = 3 is one root, and find the other two roots.

11 Prove that and hence deduce that:

12 Factorise these determinants.

13 Show that xy (x — 1), (x + 1) are factors of and factorise
completely.

The inverse of a 3 x 3 matrix

Taking as usual, and detM = A 7^ 0, use the properties of

determinants to show that

This result means that

The matrix is known as the adjugate (or adjoint) of M,

93

denoted by adjM. Note that adjM is formed by replacing each element of M by
its cofactor, and then transposing, i.e. changing rows into columns and columns
into rows.

Strictly speaking, the matrix is the left-inverse of M

because LM = I.

ACTIVITY 5.3
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5
But if R is a right-inverse (i.e. MR = I)

LM = I => (LM)R = IR = R => L(MR) =R => LI = R => L = R

so any left-inverse of a matrix is also a right-inverse, and vice versa.

If L and I/ are two left-inverses of M, then L is also a right-inverse, and

L'M = I => (L'M)L = IL = L => L'(ML) = L => I/I = L => L7 = L.
So the inverse of M (if it exists) is unique and it is justified to call L the inverse
of M, usually denoted by M"1, where

When you transpose a matrix A you form a new matrix, denoted by AT, which

has the same elements as A except that they are arranged so that the element in
the rth row and cth column of A becomes the element in the cth row and rth
column of AT. This means that the first row of A becomes the first column of
AT, and so on.

(i) Let A be an m x n matrix and B be n x p. Taking the rth row of A to be

(TI r2 r3 . . . rn) and the cth column of B to be write down

the element in the rth row and cth column of AB. Show that this is the same
as the element in the cth row and rth column of BTAT. Hence show that
(AB)T = BTAT. (Notice that it is not necessary for A and B to be square
matrices.)

(ii) By putting A = M and B = M"1, where M is a square matrix with

detM ^ 0, use the fact that IT = I to prove that (M-1)T = (M1)"1.

Use the fact that det(NM) = detN x detM to prove that if detM = 0 matrix M
does not have an inverse. (Such matrices are described as singular.}

Find the inverse of the matrix

EXAMPLE 5.3

SOLUTION

1 Evaluate the three cofactors of the elements of any one column and hence
find the determinant. In this example the first column is used.

ACTIVITY 5.5

ACTIVITY 5.4
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2 Evaluate the remaining cofactors.

3 Evaluate A by other expansions to check your arithmetic.

4 Form the matrix of cofactors, transpose it

and multiply by

The final matrix may be written as

The adjugate method illustrated in Example 5.3 is a reasonable way of finding
the inverse of a 3 x 3 matrix, though it is important to check your arithmetic as

it is very easy to make mistakes. But for larger matrices a routine known as the
row operations method is used, as it requires far fewer arithmetic steps. For
example, it takes about 10s steps to invert a 10 x 10 matrix by the adjugate
method, but only about 3000 steps by row operations. The row operations
method is easy to program for a computer - another major advantage - though

care must be exercised to avoid rounding errors, and problems do occur when
the determinant is close to zero.
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5
Row properties

You have already seen that if detM = A 7^ 0, M 1 exists and is equal to adjM.

Therefore MadjM = Al, which may be rewritten as

Inspecting the top left-hand element of the product you have

aiAi + biBi + CiCi = A. But aiAi + biBi + CiQ is the expansion by the first

column of det(MT). This means that det(MT) = detM, and it follows that a

determinant may be evaluated by expanding by rows as well as by expanding by

columns. There are row properties corresponding to all the column properties

established earlier.

Some calculators handle matrices. Find out how to use such a calculator to find

the determinant and inverse of 3 x 3 matrices.

1 By finding the adjugate matrix find the inverses of the following, where

possible.

2 Given find:

(i) adjM

(iv) detM

(ii) M(adjM)

(v) det(adjM)

(iii) (adjM)M

(vi) adj(adjM).

Comment on the answer to part (vi).

3 Find the inverse of and hence solve

4 Given evaluate AAT and hence, without doing further

calculations, write down:

(i) A'1 (ii) detA ( i i i ) ATA.

ACTIVITY 5.6

EXERCISE 5C
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55 Given and evaluate:

(i) PQ and det(PQ)
(i i) QPanddet(QP)
( i i i ) detP

(iv) detQ.
Verify that det(PQ) = det(QP) = (detP) x (detQ).

6 Given that the following matrices are singular find the values of x.

7 In this question M and N are square matrices of the same order.
(i) Prove that if M and N are non-singular, then MN is non-singular.
(i i) By considering (MN)(N~1M~1), prove that if MN is non-singular then:

(a) (MN)"1 = N^M'1

(b) adj(MN) = (adjN)(adjM).

8 The non-singular matrix M has the property that MMT = MTM. Prove that:
(i) MTM-1 = M-1MT

(i i) N = M-1MT => NNT = I.

9 Let and

(i) Find PQ.
(i i) Given that PQ is a non-zero multiple of the identity matrix, express / in

terms of a, fc, c, d and e, and state any necessary conditions on a, fc, c, d
and e.

( i i i ) Find P"1, assuming that the conditions you stated in part (ii) are satisfied.

and N is a 3 x 3 matrix with inverse

(iv) Find (MN)"1.

(v) Given that express xy y and z in terms of k.

[MEI]



98

5
10 Prove that if M is a non-singular 3 x 3 matrix then:

(i) M(adjM) = (detM)I
(ii) det(adjM) = (detM)2

( i i i ) adj(adjM) = (detM)M.

Do these results hold if M is singular? Justify your answer.

11 Prove that every matrix of the form is non-singular, and that

the inverse of such a matrix is of the same form.

12 A square matrix M is known as orthogonal if MTM = I. Prove that
orthogonal matrices have the following properties.
(i) The vectors forming the columns of an orthogonal matrix:

(a) have magnitude 1
(b) are mutually perpendicular. ('Orthogonal' means 'perpendicular'.)

(ii) The determinant of an orthogonal matrix is ±1.
( i i i ) Transformations represented by orthogonal matrices are isometric: i.e.

they preserve length.

Hints:
1 Let M map P to P' where p' = Mp.

2 Use |q' - p'|2 = (q - p/)T(q/ - p) to show that (P'Q7)2 = (PQ)2.

Matrices and simultaneous equations

In AS Further Pure Mathematics (FP1) you saw how solving simultaneous

both of which throw light on the subject.

In Interpretation A, the original two equations are regarded as the equations of
two lines in a plane. There are three possible situations.
(i) The two lines intersect at a single point, corresponding to the equations

having a unique solution.

(i i) The two lines are distinct, parallel lines that do not meet, in which case the
equations are described as inconsistent.

( i i i ) The two lines are coincident, with all their points in common,
corresponding to the two equations having infinitely many solutions that

may all be expressed in terms of a single parameter.

may be regarded as solving the matrix equationequations such as

where leading to two different interpretations,



5
In Interpretation B you are dealing with a transformation of the plane, with
matrix M. You are seeking the co-ordinates of P, knowing that it is mapped to
P7 with co-ordinates (e> /). Again there are three possibilities. If detM 7^ 0, the
situation is as described in (i) below, otherwise it is as in (ii) or ( i i i) .
(i) If detM 7^ 0, then M is non-singular, M"1 exists, and there is a unique

position for P, and a unique solution to the equations.

If detM = 0, then M is singular and M"1 does not exist: in this case the whole of
the plane is mapped onto a single line i (through the origin) and P7 is or is not
on£
(ii) If P7 is not on line i then P7 is not the image of any point in the plane, and

the equations have no solution: the equations are inconsistent.

( i i i ) If P7 is on line i then P7 is the image of a whole line of points, so there are
infinitely many solutions, which may all be expressed in terms of a single
parameter.

It was assumed throughout Interpretation B that M 7^ O, the zero matrix, as that
leads to a trivial and obvious situation: all points of the plane are mapped to the
origin, and there is no solution if P7 is not at the origin; if P7 is at the origin, P may
be anywhere on the plane, meaning that x and y may take any values.

Similarly the three simultaneous equations in three variables

are equivalent to the matrix equation where

The three equations may be regarded as the equations of three planes in three-
dimensional space. There are seven possible configurations.

(i) If det M 7^ 0, M is non-singular, M"1 exists, and the
equations have a unique solution. This corresponds
to the three planes having a single common point,
figure 5.6.

Figure 5.6

If det M = 0, M is singular and M 1 does not exist: in this case either the
equations are inconsistent and have no solutions, see (ii) below; or the equations
have infinitely many solutions, see ( i i i ) below.

(ii) The equations being inconsistent and having no solutions corresponds to
the three planes having no common point. When this happens
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5
(a) the three planes form a triangular prism,

figure 5.7;

Figure 5.7

or

(b) two planes are parallel and distinct, and

crossed by the third plane, figure 5.8;

or

Figure 5.8

(c) two planes are coincident and the third plane

is parallel but distinct, figure 5.9;

Figure 5.9

or

(d) all three planes are parallel and distinct,

figure 5.10.

Figure 5.10

( i i i ) The equations having infinitely many solutions corresponds to the three

planes having infinitely many common points. When this happens

either

(a) the three planes have a line of common

points: this arrangement is known as a sheaf

or pencil of planes, figure 5.11; the solutions

are given in terms of a single parameter;
Figure 5.11

Figure 5.12

or

(b) the three planes all coincide, figure 5.12: the

solutions are given in terms of two parameters.
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Again the trivial situation where M consists entirely of zeros has been ignored.
Figure 5.13 summarises the decisions that need to be made.

Figure 5.13

EXAMPLE 5.4 Investigate the solution of the equations

(i) when k = 10 (ii) when k = 12.

SOLUTION

Start by eliminating one variable (z) to obtain two equations in x, y.

101

Now 5x — y can only equal — 7 + 2k and 3 + k if

(i) When k = 10, equations A — 2C and B + C both reduce to 5x — y = 13, so
you can only solve for x and y (and later z) in terms of a parameter.
If x = /I, y = 5/1 — 13 and from equation C you get:

z = 3/l + 5/l-13-10 = 8/l- 23.

There is a line of solution points, which can be given in terms of a single
parameter: (/I, 5/1 — 13, 8/1 — 23). The three planes are arranged as a sheaf.



5
(i i) When k = 12, equations A — 2C and B + C are inconsistent as 5x — y

cannot be both 17 and 15.

Equations A and B are the same as in (i), so the corresponding planes have

not changed. In equation C the value of k has changed from 10 to 12,

causing a translation of the plane.

The original equations are inconsistent. The corresponding planes form a

triangular prism.

ALTERNATIVE APPROACHES
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11 Find the two values of k for which the equations

have a unique solution. In both cases find the solution set for the equations.

a unique solution, but either no solutions or many solutions.

The normals corresponding to the equations A, B, C are clearly not parallel, so

the three planes are not parallel (or identical): you can only be dealing with a

sheaf of planes or a triangular prism.

Examination of the equations shows that C = A + B when k = 10, so that the

equations are not inconsistent in (i) and you then have a sheaf of planes, their

common line being the line of solution points. (If you want to find expressions

for these points you can use algebraic methods, as in the first solution.)

As before, changing the value of k translates the plane represented by C, but

does not affect the other two planes so in (ii) the three planes form a triangular

prism and the equations are inconsistent.

In Questions 1-10 decide whether the equations are consistent or inconsistent. If

they are consistent, solve them, in terms of a parameter if necessary. In each

question also describe the configuration of the corresponding lines or planes.

A calculator tells you that so you know that there is not

do not have

EXERCISE 5D
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12 Given that detM = 0, where M is a 2 x 2 matrix, explain why

has infinitely many solutions if both p and q are zero.

What happens if p and a are not both zero?

13 Solve the equation in each of the two cases

(i) k = 3
(i i) k = 6y

giving x, y and z in terms of a parameter X if appropriate. In both cases interpret

your solution geometrically with reference to three appropriate planes.

14 A i s a 3 x 3 matrix and d is a 3 x 1 column vector. Show that all solutions
of the equation

Ar = d a
can be expressed in the form r = p + k, where p is any particular solution of
© and k is any solution of the related equation Ar = 0. Does it matter if A
is singular or non-singular?

(If you are studying Differential Equations compare what you have just done

with the method of solving certain differential equations by using a
particular integral and a complementary function.)

15 Show that the equations are inconsistent unless k takes one

particular value. What is that value?

16 You are given the matrix

(i) Show that detM = 0.

(i i) Solve the equation in each of the two cases

(a) k = 3

(b) fc = 8,

giving x, y and z in terms of a parameter t if appropriate.

In each case interpret your solution geometrically with reference to the
three planes

[MEI]
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Eigenvalues and eigenvectors

2 x 2 matrices

In a reflection, every point on the mirror line maps to itself. The line may be
described as a line of invariant points, since every point on the line is itself
invariant.

A line of invariant points is a special case of an invariant line, where the image
of every point on the line is itself on the line but is not necessarily the original
point.

As an example, think of the lines through the origin in an enlargement, scale
factor 2, centre the origin. Each point on the line in figure 5.14 maps to another
point on the line, but the origin maps to itself.

Figure 5.14

This idea is now developed in terms of matrices, but only for lines which pass
through the origin.

As an example look at the effect of the transformation with matrix

the transformation defined bySince

pre-multiplying position vectors by matrix M maps the vector to

Similarly the image of Each point on the line y = x can be

represented by the position vector of the form and the points with

position vectors form the line This means that under the

transformation represented by the matrix M the image of the line y = x is the

the image of the lineline Similarly since

y = 2x is the line

104
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(i) Find the images of the following position vectors under the transformation

given by

(ii) Use your answers to part (i) to find the equations of the images of the
following lines.

The information you have just gathered may be represented as in figure 5.15,
where the object lines and their images are shown in separate diagrams.

Figure 5.15

However you can show all the information on one diagram, as in figure 5.16,

where (parts of) the object lines are shown at the centre of the diagram, and
(parts of) their image lines are shown in the outer section of the diagram.

Figure 5.16

ACTIVITY 5.7
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The shaded part of the diagram is not directly relevant but shows lines

connecting each object line to its image. You will notice that there are two

and y = — x, which map to themselves under thisinvariant lines,

transformation. The other lines appear to crowd towards

from y = —x. This diagram prompts several questions.

moving away

Are there other invariant lines?

Do all transformations behave like this?

How can such lines be found efficiently?

attract and y = — x repel?Why does

Terminology

To answer these questions you need suitable terminology.

If s is a non-zero vector such that Ms = /Is, where M is a matrix and X is a

scalar, then s is called an eigenvector of M. The scalar X is known as an

eigenvalue.

Therefore, since

and

and are eigenvectors of the matrix The

corresponding eigenvalues are 5 and 2 respectively. It will become evident later

that these are the only two eigenvalues.

Properties of eigenvectors

Notice the following properties of eigenvectors.

M, with (respectively) the same eigenvalues.

2 Under the transformation the eigenvector is enlarged by a scale factor equal to

its eigenvalue.

3 The direction of an eigenvector is unchanged by the transformation.

(If the eigenvalue is negative the sense of the eigenvector will be reversed.)

When finding eigenvectors you need to solve the equation Ms = /Is. Now:

1 All non-zero scalar multiples of and are also eigenvectors of

I is the identity matrix;
it is superfluous in this line.

I is essential here.
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Clearly s = 0 is a solution, but you are seeking a non-zero solution for s.
For non-zero solutions you require det(M — /ll) = 0. The equation
det(M — /ll) = 0 is known as the characteristic equation of M. The left-hand side
of the characteristic equation is a polynomial in /I; this polynomial is known as
the characteristic polynomial

(The German word for 'characteristic' is eigen: eigenvectors are also known as
characteristic vectors; eigenvalues are also known as characteristic values.)

Finding eigenvectors

The following are the steps for finding eigenvectors, illustrated in the next
example.

1 Form the characteristic equation: det(M — /ll) = 0.

2 Solve the characteristic equation to find the eigenvalues, L

3 For each eigenvalue k find a corresponding eigenvector s by solving
(M - /ll)s = 0.

EXAMPLE 5.5 Find the eigenvectors of the matrix

SOLUTION

1 Form the characteristic equation, det(M — /ll) = 0.

2 Solve the characteristic equation to find the eigenvalues, L

3 For each eigenvalue A find a corresponding eigenvector s by solving
(M - /ll)s = 0.

so that det
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When where

When

Thus the eigenvectors are

multiples of these vectors.

and or any non-zero scalar

Expressing vectors in terms of the eigenvectors and

explains why the line attracts and the line y = — x repels under the

transformation with matrix Since Si and s2 are non-zero and

non-parallel you can express any position vector p as as! + /?s2. Then:

showing that the image of p is attracted towards the eigenvector with the

numerically larger eigenvalue.

Express three vectors in terms of Si and s2. Illustrate the above property by

drawing an accurate diagram showing your vectors, Si, s2, and their images

under the transformation given by

3 x 3 matrices

The definitions of eigenvalue and eigenvector apply to all square matrices. The

characteristic equation of matrix M is det(M — /ll) = 0. When M is a 2 x 2

matrix the characteristic equation is quadratic, and may or may not have

real roots. When M is a 3 x 3 matrix of real elements the characteristic equation

is cubic, with real coefficients; this must have at least one real root. This proves

that every real 3 x 3 matrix has at least one real eigenvector, and so every linear

transformation of three-dimensional space has at least one invariant line. You

use the same procedure as before for finding the eigenvalues and eigenvectors of

a 3 x 3 matrix, though the work will generally be lengthy.

This tells you that if y is any
number, k say, then x is —k.

If y is any number,
k say, then x is 2k.

ACTIVITY 5.8
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5EXAMPLE 5.6 Find the eigenvectors of the matrix

SOLUTION

det

When

so that det(M - /ll) = 0 o A, = 5 or 2 (repeated root).

so that is an eigenvector, with eigenvalue 5.

When A = 2, a repeated root:

i.e. any vector in the plane x + / + z = 0 i san eigenvector, with eigenvalue 2.

A general vector in that plane is

Thus the eigenvectors are and where p and q are not both

zero.

The ideas above also apply to larger square matrices, but if M is n x n, its
characteristic equation is of degree n, and solving polynomial equations of
higher degree is generally not straightforward - Evariste Galois (1811-32)
proved that there is no general formula for solving polynomial equations of
degree 5 or higher. In practice eigenvalues are not usually found by solving
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characteristic equations! Numerical methods will usually be applied to matrices,
using a computer, with consequent problems caused by approximation and
rounding errors.

The 3 x 3 matrix M has three eigenvalues /L l 5 /L25 ^3> the roots of the polynomial
equation det(M — /II) = 0.

(i) Imagine factorising the polynomial det(M — /ll) into linear factors, and

hence show that the product of the three eigenvalues is detM.
(i i) By considering the coefficient of the term in /I2 in the polynomial

det(M — /II) show that the sum of the three eigenvalues is the sum of the
elements on the leading diagonal of M. This sum is known as the trace of
matrix M, tr(M).

These properties also hold for n x n matrices.

1 Find the eigenvalues and corresponding eigenvectors of these 2 x 2 matrices

and check that the sum of the eigenvalues is the trace of the matrix.

2 Find the eigenvalues and corresponding eigenvectors of these 3 x 3 matrices
and check that the sum of the eigenvalues is the trace of the matrix.

3 Matrix M is 2 x 2. Find the real eigenvalues of M and the corresponding

eigenvectors when M represents

(i) reflection in y = xtan 9

(ii) a rotation through angle 9 about the origin.

4 Vector s is an eigenvector of matrix A, with eigenvalue a, and also an
eigenvector of matrix B, with eigenvalue /?. Prove that s is an eigenvector of

and find the corresponding eigenvalues.
[Hint: s is an eigenvector of M <^> Ms = /Is, s 7^ 0.]

(i) A + B (ii) AB

ACTIVITY 5.9

EXERCISE 5E
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5
5 Matrix M has eigenvalue /I with corresponding eigenvector s; k is a non-zero

scalar. Prove that the matrix fcM has eigenvalue H and that s is a
corresponding eigenvector.

6 (i) Show that is an eigenvector of

and determine the corresponding eigenvalue.

(i i) State two other eigenvectors of A which, together with r, give three
mutually perpendicular eigenvectors and state the corresponding
eigenvalues.

( i i i ) What is the value of detA?
[O&C]

7 Matrix M is n x n. For n = 2 and for n = 3 prove that if the sum of the
elements in each row of M is 1 then 1 is an eigenvalue of M.
(This property holds for all values of n.)

8 Show that if A is an eigenvalue of the square matrix M and the
corresponding eigenvector is s, then:

/I2 is an eigenvalue of M2

/I3 is an eigenvalue of M3

hn is an eigenvalue of Mn

and even: h~l is an eigenvalue of M"1.

Show further that s is the corresponding eigenvector in all cases.

For

find the eigenvalues of: (a) M (b) M2 (c) M5 (d) M l.

9 The 2 x 2 matrix M has real eigenvalues /li, /12 and associated eigenvectors

Si,s2, where |^|>|^2|. By expressing any vector v in terms of Si ands2,
describe the behaviour of Mnv as n increases when

10 Given M = —MT, where M is a 3 x 3 matrix, prove that

det(M - fcl) = -det(M + fcl).

Deduce that if A is a non-zero eigenvalue of M then —A is also an eigenvalue

ofM.
(Such matrices are called skew-symmetric.)
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11 The self-drive camper-van hire firm DIY has depots at Calgary and

Vancouver. The hire period commences on Saturday afternoon, and all vans
are returned (to either depot) the following Saturday morning. Each week:

• all DIY's vans are hired out
• of the vans hired in Calgary, 50% are returned there, 50% to Vancouver

• of the vans hired in Vancouver, 70% are returned there, 30% to Calgary.

(i) One Saturday the Calgary depot has c vans and the Vancouver depot

has v vans. Form matrix M so that the product M gives the

number of vans in each depot the following Saturday.
(ii) At the start of the season each depot has 100 vans. Use matrix

multiplication to find out how many vans will be at each depot two
weeks later.

( i i i ) Solve the equation MX = x where x = and explain the connection

with eigenvalues.
(iv) How many vans should DIY stock at Calgary and Vancouver if they

want the number of vans available at those depots to remain constant?

(The process described above is an example of a Markov process. The
matrix governing it is a transition or stochastic matrix. Each column of the
transition matrix consists of non-negative elements with a sum of 1.)

When used in statistics an alternative notation is often used in which a

state is represented by a row vector and is post-multiplied by the
transition matrix. In that convention the transition matrix is transposed.

rl

12 At time t, the rabbit and wolf populations (r and w respectively) on a
certain island are described by the differential equations:

Throughout this question p represents and M represents

(i) Show that the differential equations may be written as:

(ii) Show that if p = p i ( t ) and p = p2(t) satisfy (2) then
p = apj(t) + bp2(t) also satisfies (2), where a and b are constants.

( i i i ) Show that if p = e^k satisfies (2), where k is constant, then Mk = /Ik.
(iv) Find the eigenvalues and eigenvectors of M and hence solve © given

that there are 1000 rabbits and 50 wolves at t = 0.
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13 The number k is (numerically) the largest of the eigenvalues of 3 x 3 matrix

M, and s is a corresponding eigenvector; v0 is an arbitrary vector, and
\n = Mnv0 has components xn, yn and zn.

(i) Explain why, as n increases, vn generally converges on a multiple of s
and identify the occasions when this does not happen.

(ii) What do you expect to notice about as n increases?and

Evaluating powers of square matrices

Pre-multiplying position vector r by a matrix M gives r', the position
vector of R7, the image of R under the transformation represented by M. If you
apply the same transformation to R7 you get R7/, with position vector
r " = M(Mr) = M2r. Higher powers of M arise if you continue to apply the
same transformation. In this section you will learn to use eigenvalues and
eigenvectors to evaluate powers of matrices.

The two statements

and

can be combined into the single statement:

which you may write as MS = SA

where and

A is the Greek capital letter lambda.

In just the same way if any 2 x 2 matrix has eigenvectors s l 5 s2, corresponding to
eigenvalues /L l 5 /I2, then Ms! = ^Si and Ms2 = /I2s2

 s° that MS = SA, where
S = (si s2). the 2 x 2 matrix which has the eigenvectors as columns, and

diagonal and zeros elsewhere.

If S is non-singular, S"1 exists, and pre-multiplying MS = SA by S"1 gives
S-1MS = A; you then say that M has been reduced to diagonal form or that M
has been diagonalised.

Although there are square matrices which cannot be reduced to diagonal form,
being able to reduce M to diagonal form A helps if you want to raise M to a
power. Post-multiplying MS = SA by S"1 gives M = SAS"1

a matrix with the corresponding eigenvalues on the leading

113

The eigenvalues and

eigenvectors of

were found on page 107.
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so that

This simplification makes extensive use of the
associate property of matrix multiplication

together with properties of inverse identities.

Similarly: Mn = SAnS 1, which can be proved formally by induction.

Since and you can evaluate Mn readily, doing

only two matrix multiplications whatever the value of n.

EXAMPLE 5.7 Find Mn where

SOLUTION

You have already seen that and are eigenvectors, with eigenvalues

2 and 5 respectively, so take and

You could use any non-zero

multiples of

but these are the simplest.Then and

Therefore

Again the work with 3 x 3 and other square matrices follows the same pattern,

though the calculations are more complicated.

The Cayley-Hamilton theorem

You have already seen that the characteristic equation for the matrix

114
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Notice that and that

so that 101 - 7M + M = O, the zero matrix.
This illustrates the Cayley-Hamilton theorem which states:

'Every square matrix M satisfies its own characteristic equation.'

Note that I and O have to be inserted appropriately so that the equation makes

sense.

You can readily prove this result for the general 2 x 2 matrix by direct
multiplication, but the proof below, though written for 3 x 3 matrices, shows a
style of argument that can be applied to all other square matrices.

whichWhen M is 3 x 3, notice that det

may be written as dQ + d\k + d2A
2 — A3 where 4)5 ^i? ^2 are independent of X.

Then the characteristic equation is

and the Cayley-Hamilton theorem states that

Since the elements of the 3 x 3 matrix adj(M — /ll) are 2 x 2 determinants, each
element of adj(M — /ll) is (at most) quadratic in A. You can therefore write

where A0, Ai and A2 are 3 x 3 matrices with elements that are independent of X.

On page 94 it was proved that adjM for detM 7^ 0, from which it

follows that:

This is also true when
detM = 0 (see Exercise 5C,

Question 10).

M(adjM) = (detM)I.

Substituting (M — /ll) for M gives:

therefore

and adding these four results gives d$I + diM + d2M
2 — M3 = O confirming

that M satisfies its own characteristic equation.
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The Cayley-Hamilton theorem states that a matrix M satisfies its own

characteristic equation. The characteristic equation may be written as
det(M — /ll) = 0. Replacing A by M produces a determinant consisting entirely
of zeros. Is this sufficient proof of the theorem?

?

This expression, giving Mn+2 in terms of Mn+1 and Mn, is an example of a

recurrence relation.

Use the Cayley-Hamilton theorem to show that:

See Example 5.7.)

with n = 8.(Check this against

Thus

5
EXAMPLE 5.8

SOLUTION

As before, the characteristic equation is 10 — 7/1 + /I2 = 0. By the
Cayley-Hamilton theorem:

use the Cayley-Hamilton theorem to find M8.Given

ACTIVITY 5.10
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Historical note

The Cay ley-Hamilton theorem was first announced by Arthur Cayley in 'A Memoir on the Theory of

Matrices' in 1858, in which he proved the theorem for 2 x 2 matrices and checked it for 3 x 3 matrices.

Amazingly he went on to say, 'I have not thought it necessary to undertake the labour of a formal proof

of the theorem in the general case of a matrix of any degree.' Essentially the same property was

contained in Sir William Hamilton's 'Lectures on Quaternions' in 1853, with a proof covering 4 x 4

matrices. The name 'characteristic equation' is attributed to Augustin Louis Cauchy (1789-1857), and

the first general proof of the theorem was supplied in 1878 by Georg Frobenius (1849-1917), complete

with modifications to take account of the problems caused by repeated eigenvalues.

1 Find matrices S and A such that M = SAS 1.

2 Express in the form SAS 1 and hence find M4. What

can you say about Mn when n is very large?

3 Calculate the following.

4 Find examples of 2 x 2 matrices to illustrate the following.

(i) M has repeated eigenvalues and cannot be diagonalised.

(i i) M has repeated eigenvalues and can be diagonalised.

( i i i ) M has 0 as an eigenvalue and cannot be diagonalised.

(iv) M has 0 as an eigenvalue and can be diagonalised.

5 Demonstrate that satisfies its own characteristic equation.

EXERCISE 5F
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[MEI]

and show that

(i) Show that 1 is an eigenvalue of A, and find the other two eigenvalues.
(ii) Find an eigenvector corresponding to the eigenvalue 1.

( i i i ) Using the Cayley-Hamilton theorem, or otherwise, find integers p, q
and r such that

10 You are given the matrix

corresponding eigenvalue. By finding the other eigenvalues and their

eigenvectors express M in the form SAS"1.

and state the

[MEI]

is an eigenvector of9 Show that

(iv) Evaluate

5
6 Prove the Cayley-Hamilton theorem for by calculating M2

and substituting directly into the characteristic equation.

7 You are given the matrix where k ̂  2.

(i) Find the eigenvalues of M, and the corresponding eigenvectors.
(ii) Write down a matrix P for which P-1MP is a diagonal matrix.
( i i i ) Hence find the matrix Mn.

(iv) For the case k = 1, use the Cayley-Hamilton theorem to find integers p

and q such that

8 You are given the matrix

[MEI]

M9 = pM8 + qM7.

(i) Show that —2 and — 1 are eigenvalues of M, and find the other eigenvalue.

(ii) Show that is an eigenvector corresponding to the eigenvalue

—2, and find an eigenvector corresponding to the eigenvalue — 1.
( i i i ) Using the Cayley-Hamilton theorem, or otherwise:

(a) show that M4 = 11M2 + 18M + 81
(b) find the values of p, q and r such that M"1 = pM2 + qM + rl.



119

511 A matrix M is given by

(i) Find, in terms of /c,

(a) the determinant of M
(b) the inverse matrix M"1.

One of the eigenvalues of M is 2.

(i i) Find the value of k, and show that the other two eigenvalues are 1 and

-1.
( i i i ) Find integers p, q and r such that M2 = pM + ql + rM"1.
(iv) Show that M4 = 10M + I - 10M"1.

[MEI]

12 You are given the matrix

(i) Show that 3 is an eigenvalue of M, and find the other eigenvalue.
(i i) For each eigenvalue, find a corresponding eigenvector.
( i i i ) Write down a matrix P such that P-1MP is a diagonal matrix.

[MEI]

(iv) Hence show that

13 The Fibonacci sequence 1,1,2, 3,... is defined by

(i) Show that un+1 = Mun where

(i i) Show that the eigenvalues of M are

with associated eigenvectors

( i i i ) Deduce that and

hence show that

14 (i) A and B are 2 x 2 matrices with eigenvalues a l 5 a2 and j8 l5 j82

respectively. Are the eigenvalues of the product AB the products of the

eigenvalues of A and B? Justify your answer.
(i i) Find the fallacy in this 'proof.

A has eigenvalue X and B has eigenvalue JJL

ABs = Ajus

ABs = /M.S
ABs = /Us
AB has eigenvalue Ifa.
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15 Matrix M is n x n. Matrix S is such that MS = SD, where D is a diagonal

matrix with /l^, /I2 , . . . /ln on the leading diagonal and zeros elsewhere.

Suppose the first column of S is Si. By considering the first columns of the
products SD and MS show that ̂  is an eigenvalue of M and that Si is a
corresponding eigenvector.

(Similar arguments apply to the other columns of S and /I2, ^3? ••• ^« showing
that when searching for S and D such that M = SDS"1 where D is diagonal,
the leading diagonal of D is composed of eigenvalues, and S is composed of
corresponding eigenvectors in the correct order.)

16 As usual Si, s2 and s3 are eigenvectors corresponding to distinct eigenvalues

/L l 5 /I2
 and ^3 of the 3 x 3 matrix M, and S is the matrix (si s2 s3).

(i) By p re-multiplying as! + bs2 = 0 by M show that Si cannot be parallel
to s2.

(ii) Extend the argument to show that Si, s2 and s3 cannot be coplanar.
( i i i ) Show that S is non-singular and deduce that M can be diagonalised.

(All nx n matrices with n distinct eigenvalues can be diagonalised.)

17 The 3 x 3 matrix A is said to be similar to the 3 x 3 matrix B if a non-
singular matrix P exists such that A = P-1BP.
(i) Prove that every 3 x 3 matrix is similar to itself.
(ii) Prove that A is similar to B => B is similar to A.
(i i i ) Prove that if A is similar to B and B is similar to C then A is similar to

C.
(iv) Prove that similar matrices have the same characteristic equation and

deduce that similar matrices have the same eigenvalues.

18 The trace of matrix A is tr(A), defined as the sum of the elements on the
leading diagonal of A. For 3 x 3 matrices prove that:

(i) tr(A + B) = tr(A) + tr(B)
(ii) tr(fcA) = fctr(A), where A: is a scalar
( i i i ) tr(AB) = tr(BA)
(iv) if there exists a non-singular matrix P such that

(v) tr(A) is the sum of the three eigenvalues of A.

then



121

5
19 Matrices A and B can be diagonalised. Assuming neither matrix has repeated

eigenvalues, show that:

A and B share the same eigenvectors 4=> AB = BA.

(This result, useful in quantum mechanics, also holds if eigenvalues are

repeated.)

20 A non-negative matrix is one which contains no negative elements. In this
question, X\ is the numerically larger eigenvalue of non-negative 2 x 2
matrix M.

(i) Prove that ̂  is positive.
(i i) By considering (I - M) (I + M + M2 + M3 + . . . + Mn) show that if

/l! < 1 then (I - M)"1 = I + M + M2 + M3 + .. . and deduce that
(I — M)~ is non-negative.

(All non-negative matrices exhibit similar properties. They are important
when applying mathematical models to economics.)

INVESTIGATION

Using a computer, investigate how to find the inverses of matrices.

1 Program a spreadsheet to find the inverses of:

(i) 3 x 3 matrices without using the spreadsheet's built-in functions

(ii) matrices using the spreadsheet's built-in functions.

2 Find out how to use a computer algebra system to invert matrices.
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KEY POINTS

1

provided detM 7^ 0,

where A3 = the cofactor of

C2 = the cofactor of

2 det(MN) = detM x detN provided M and N are both n x n.

3 (MN)~ = N^M"1, provided both M and N are n x n and non-singular.

4 (MN)T = NTMT, provided Mis m x n and N is n x p.

5 When solving n simultaneous equations in n unknowns:
• if detM = 0, there is a unique solution
• if detM 7^ 0, either there is no solution or there are infinitely many

solutions.

6 An eigenvector of square matrix M is a non-zero vector s such that
Ms = /Is; the scalar A is the corresponding eigenvalue.

7 The characteristic equation of M is det(M — Xf) = 0.

8 If S is the matrix formed of the eigenvectors of M and A is the diagonal
matrix formed of the corresponding eigenvalues then

MS = SA, A = S^MSjM* = SA^S"1.

9 The Cayley-Hamilton theorem states:

'Every square matrix M satisfies its own characteristic equation.'

and

det

adj

adj]
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Hyperbolic functions

Just as much as it is easy to find the differential of a given quantity, so
it is difficult to find the integral of a given differential. Moreover,
sometimes we cannot say with certainty whether the integral of a given
quantity can be found or not.

John Bernoulli, 1667-1748

The soap bubble between two rings on the left casts a shadow which coincides
with the hanging chain, showing that both form the same curve - a catenary.

The hyperbolic cosine and hyperbolic sine functions

The cosine and sine functions are called circular functions, since the parametric

equations x = cos 9, y = sin 9 give the circle x2 + y2 = 1. This equation can be

rearranged to give y = ±\/l — x2, which is why the inverse circular functions

are useful in finding integrals involving \/l — *2 (and, likewise, Va2 — x2, as on

page 12). In the eighteenth century several mathematicians investigated integrals

involving \/x2 — 1 in a similar way, noticing that if y = \/x2 — 1 then

x2 — y2 = 1 which is the equation of a hyperbola.

Now

so that if

then

from which and

These are parametric equations for the hyperbola x2 — y2 = 1 in terms of the

parameter p.

6
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6
These equations turn out to be particularly useful in the case when p = ew,

Then

so that

By analogy with the circular functions these are called the hyperbolic cosine and
hyperbolic sine functions respectively (names introduced by J. H. Lambert in
1768). These are abbreviated to cosh and sink (pronounced 'shine' or csine-ch' or
csinch' or csinsh' - take your pick!), so that

Prove that cosh ( — u)= cosh u and that sinh (—u) = — sinh u (i.e. that cosh and

sinh are respectively even and odd functions). What does this tell you about the
symmetries of the graphs of these functions?

The graphs of these hyperbolic functions are easy to sketch. Since
cosh u = y (ew + e~w) the graph of v = cosh u lies mid-way between the graphs
of v = ew and v = e~w, as shown in figure 6.1. Note that v = cosh u has a
minimum point at (0, 1).

Figure 6.1

Similarly, the graph of v = sinh u is

mid-way between the graphs of v = ew

and v = —e~w (figure 6.2). It passes
through the origin where it has a point
of inflection.

ACTIVITY 6.1
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6
These graphs are nothing like the sine or cosine wave graphs, but the definitions
of the hyperbolic functions are very similar to the results linking the circular
functions with e^ which were given on page 47. Compare

cosh

sinh

and

and

Many other similarities follow from this. For example, starting with the
definitions and differentiating,

and

Also, since

and

by subtracting

and by adding

An important result, but not
surprising since it gets us

back to x2 — y2 = 1.

Using cosh2 u — sinh2 u = 1 and cosh 2u = cosh2 u + sinh2 u, write down two

further versions of cosh 2 u. Compare all three formulae for cosh 2u with the
corresponding formulae for cos 29.

Use the definitions of sinh u and cosh u to prove that

(i) sinh 2u = 2 sinh u cosh u

(ii) sinh (u + v) = sinh u cosh v + cosh u sinh v

( i i i ) cosh (u + v) = cosh u cosh v + sinh u sinh v.

[Hint: Start with the right-hand sides.]

The only difference between these identities and the corresponding ones for the

circular functions is that the sign is reversed whenever a product of two sines is
replaced by the product of two sinhs. This is called Osborn's rule: it arises
because of the factor j in the denominator of sin 9 as defined above.

ACTIVITY 6.2

ACTIVITY 6.3
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6
EXAMPLE 6.1 Solve the equation cosh u = 2 sinh u — 1.

SOLUTION

It is simplest to work from the definitions.

(since eu cannot be negative)

1 Prove that

Write down the corresponding results for cosh A — cosh B and for

sinh A db sinh B, and prove one of these.

2 Given that sin 39 = 3 sin 9 — 4 sin3 9 and cos 30 = 4 cos3 9 — 3 cos 9y write
down expressions for sinh 3u in terms of sinh uy and cosh 3u in terms of cosh u.

3 (i) Find all the real solutions of these equations.
(a) cosh x + 2 sinh x = — 1
(b) 10coshx-2sinhx = 11

(c) 7 cosh x + 4 sinh x = 3

(ii) Find conditions on a, by c which are necessary and sufficient to ensure
that the equation a cosh x + b sinh x = c has two distinct real roots.

show that 2e* = 5 + 2e y and 3e x = -5 + 3er.

Hence find the real values of x and y.

5 The diagram below represents a cable hanging between two points A and B,
where AB is horizontal. The lowest point of the cable, O, is taken as the
origin of co-ordinates as shown.

4 Given that sinh x + sinh

and cosh x — cosh

EXERCISE 6A
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If the cable is flexible and has uniform density then the curve in which it
hangs is called a catenary. In 1691 John Bernoulli (responding to a challenge
set by his brother James) proved that the equation of the catenary is

where c is a constant.

If for a particular cable c = 20 m and AB = 16 m, find the sag of the cable,
i.e. the distance of O below AB, and the angle that the tangent at A makes
with the horizontal.

6 P is any point on the curve M is the foot of the perpendicular

from P to the x axis, and Q is the foot of the perpendicular from M to the
tangent of the curve at P. Prove that
(i) MQ = c

(i i) the product of the y co-ordinates of P and Q is c2.

7 Differentiate each of the following with respect to x.

(i) sinh 4x

(iii) cosh2 x

(v) sinh ( In x)

(vii) (1 +x)3cosh33x

(ii) cosh(x2)
(iv) cos x sinh x

(vi) e5* sinh 5x

(M\\\) In (cosh x + sinh x)

8 Express cosh2 x and sinh2 x in terms of cosh 2x.

Hence find J cosh2 x dx and J sinh2 x dx.

9 Integrate each of the following with respect to x.

(i) sinh 3x

(iii) xsinhx

(v) xsinh x

(vii) cosh2 x sinh3 x

(ii) xcosh( l+x 2 )
(iv) cosh3 x

(vi) e4* cosh 5x

(M'III) cosh 6x sinh 8x

10 Prove that cosh x > x for all x. Prove that the point on the curve y = cosh x

which is closest to the line y = x has co-ordinates (In (1 + \/2)> A/2).

11 Prove that ( cosh x + sinh x)n = cosh nx + sinh nx for all integers n. State
and prove the corresponding result for ( cosh x — sinh x)n. Deduce
expressions for cosh 5x in terms of cosh x and for sinh 5x in terms of sinh x.

12 In this question, the function f(x) is defined to be

f(x) = 13 cosh x + 5 sinh x.

(i) For the curve with equation y = f(x), show that the area under the

(i i) By first expressing f(x) in terms of e* and e *, or otherwise, find the
minimum value off(x).

( i i i ) Solve the equation f(x) = 20, giving the answers as natural logarithms.

(iv) Differentiate arctan with respect to x. Hence find dx.

curve between x = — a and x = a (where a > 0) is (f(a)-f(-a)}.

127
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6
Other hyperbolic functions

The four remaining hyperbolic functions are defined in a similar way to the

corresponding circular functions:

For each of these functions state any necessary restriction on the domain, give

the range, and say whether the function is even or odd.

The most important of these is the tanh function (pronounced 'than' or ctan-ch').

dividing top and bottom by e*Let y = tanh x. Then

so that

By a similar method,

Using the quotient rule to differentiate gives

since cosh2 x — sinh2 x = 1.

So the graph of y = tanhx (see figure 6.3) has

• a positive gradient everywhere, never more than 1 (since 0 < sechx < 1)

• half-turn symmetry about the origin

• asymptotes y = ±1.

Figure 6.3

1 Sketch the graph of each of the following, giving the equations of any asymptotes.

2 Prove that

(i) y = sech x (ii) y = cosechx ( i i i ) y = cothx

(i) 1 — tanh x = sech x

(ii) coth2 x — 1 = cosech2^

( i i i ) tanh

EXERCISE 6B

ACTIVITY 6.4
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6
3 Find all the real solutions of these equations.

(i) 4 tanh x = coth x
(i i) 3 tanh x = 4(1 - sechx)
( i i i ) 3 sech2 x + tanh x = 3

4 (i) Find exact expressions for p and qy where sinhp = sechp and
cosh q = coth q.

(i i) Arrange cosh x, sinh x, tanh x, sech x, cosech x, coth x in ascending order
of magnitude
(a) when 0 < x < p
(b) when p < x < q.

sin x = tanh k has just one solution, and prove that tan x = sinh k and
sec x = cosh k for this value of x.

6 Prove that:

5 If and k is any real constant, show that the equation

correct to 4 decimal places

(b) Write down the series for sinh (x2) in ascending powers of xy giving
the first three non-zero terms and the general term.

(c) Given that f(x) = sinh (x2)y use the series in part (i)(b) to find the values
of f (5)(0) and f(6) (0). [ f ( n } ( x ) denotes the nth derivative of f(x).]

(i i) Use the series in part (i)(b) to find the value of

(The Maclaurin series for coshx and sinhx are valid for all values of x.)

10 (i) (a) Show, by successive differentiation of sinh x, that its Maclaurin series is

(i i) by using the definition cosh

[Hint: For ( i i i ) and (iv) use the substitution u = ex.]

9 Find the Maclaurin series for cosh xy including the general term,

(i) by finding the values of successive derivatives at x = 0

7 Differentiate each of the following with respect to x.

8 Integrate each of the following with respect to x.

(i) tanhx (ii) cothx ( i i i ) sechx (iv) cosech x

(iv) In (tanh x)( i i i ) cothx(ii) cosech x(i) sech x
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Figure 6.5

6
11 (i) Show that cosh

(cosh 2x — 3 sinh x) dx(ii) Find

(ii) Find the series expansion for cosh4 xy as far as the term in x4.

[MEI, part]

[MEI part]

12 (i) Show that the only stationary point on the curve

The inverse hyperbolic functions

The cosh function is a many-to-one function, since more than one value of x
can yield the same value of y (e.g. cosh;q = cosh (—Xi) = y\ in figure 6.4).

Figure 6.4

But if the domain is restricted to the non-negative real numbers, i.e. to x ^ 0,

then the function is one-to-one, with the graph shown by the heavy line in
figure 6.4. This restricted cosh function has an inverse function, which is
denoted by arcosh (or sometimes cosh~l)y so that

v = arcosh u ^ u = cosh v and v ̂  0.

The usual process of reflecting the graph of a function in the line y = x to give
the graph of its inverse function produces the graph of y = arcosh x shown in
figure 6.5.
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6
Since the sinh and tanh functions are already one-to-one there is no need for
any similar restrictions in defining their inverse functions arsinh and artanh (or

sinh~l and tank'1).

The graphs are shown in figure 6.6.

Thus v = arsinh u

v = artanh u

u = sinh v

u = tanh v.

Figure 6.6

State the domain and range of each of these three inverse hyperbolic functions.

Just as the hyperbolic functions are defined using the exponential function, so
their inverses can be put in terms of the natural logarithm function. The most
straightforward to deal with is artanh x:

Therefore artanh

multiplying top and
botttom by Qy

y = artanh x x = tanh/

ACTIVITY 6.5
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m
As you might expect, arcosh x is a bit more complicated:

using the quadratic
equation formula

The sum of these two roots is

so the second root is the negative of the first (as shown in figure 6.4). Since
arcosh x > 0 by definition, the required root is the positive one. Therefore
arcosh x = \n(x + A/x2 — 1).

Use a similar method to prove that arsinhx = ln(x + \/x2 + 1).

Explain why the root In (x — \/x2 + 1) is rejected.

The derivatives of arcosh x and arsinh x can be found by differentiating these

logarithmic versions, but it is easier to work as follows.

differentiating both
sides with respect to x

using cosh2 y - sinh2 y = 1

Since the gradient of y = arcosh x is always positive you must take the positive

square root, and therefore (arcosh x)

This result is equivalent to the integral dx = arcosh x + c, from which

it is easy to integrate related functions. For example, to find dxy use

the substitution x = au. Then dx = adu and

ACTIVITY 6.6
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6

Prove by similar methods that

Inverse hyperbolic functions are used in integration in much the same way as

inverse trigonometric functions. More complicated examples use techniques
such as taking out constant factors or completing the square, just as on pages
15-17.

EXAMPLE 6.2 Find

SOLUTION

(ii) Let x = cosh u so that dx = sinh u du. Then

ACTIVITY 6.7
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6
Therefore

( i i i ) x2 + 6x + 13 = x2 + 6x + 9 + 4 = (x + 3)2 + 4.

1 Differentiate ln(x + vx2 — 1) with respect to xy and show that your

answer simplifies to

2 Prove that (artanh x) By using partial fractions and integrating,

deduce from this the logarithmic form of artanh x.

3 Sketch the graphs of the inverse functions y = arsech x> y = arcosech x,
y = arcoth x, giving the domain and range of each.

4 Differentiate each of the following with respect to x.

(i) arsinh 3x
(ii) arcosh(V)
( i i i ) arctan (sinh x)
(iv) artanh (sin x)
(v) arsech x

5 Integrate the following with respect to x.

(i) arcosh x
(ii) arsinh x
( i i i ) artanh x.

[Hint: Write arcosh x = 1 x arcosh x and integrate by parts.]

6 Integrate the following with respect to x.

EXERCISE 6C
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[MEI]

6
7 Evaluate each of the following, correct to 3 significant figures.

8 The points PI (a cos 0, a sin 0} and P2(fl cosh </>, a sinh </>) lie on the circle
x2 + y2 = a2 and the rectangular hyperbola x2 — y2 = a2 respectively (see
diagram below).

Prove that area OAPi is proportional to 9 and that area OAP2 is
proportional to </>, with the same constant of proportionality.

9 By substituting suitable circular or hyperbolic functions, find

[MEI, part]

[MEI, part]

[MEI, part]

10 Show that

11 Show that

12 (i) Find J x sinh (x2) cbc.

(i i) By writing x3 sinh (x2) as x2(xsinh ( x 2 ) ) , or otherwise, find
jVsinh(>2)dx.

13 (i) By differentiating the equation tanhy = x, show that

(i i) Using integration by parts, find J artanh x dx.

( i i i ) Prove that artanh

(iv) Show that artanh x

(v) Show that the expansion of artanh x in ascending powers of x begins
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6
14 (i) Find the exact value of

(ii) (a) Differentiate the following with respect to x (where 0 < x < 2),

simplifying your answers as much as possible.

(b) Using integration by parts, show that

(c) Find
[MEI]

15 (i) Obtain the formula

sinh 2x — sinh 2y = 2 cosh (x + y) sinh(x — y)

and prove that

cosh 9 + cosh 29 + • • • + cosh n9 = cosh (n+ 1)9 sinh n9 cosech 9.

(ii) Evaluate the integral

[MEI]

16 Prove that the curves y = arsinh x and y = arcosh 2x intersect where

Find the area bounded by the x axis and these curves.
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7 Maclaurin series (See also page 83.)
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Investigation of curves

.. .he seemed to approach the grave as an hyperbolic curve approaches a
line, less directly as he got nearer, till it was doubtful if he would ever
reach it at all.

Thomas Hardy, Far from the Madding Crowd

This chapter is based on the assumption that you have a graphic calculator.

Defining a curve

As a train moves, a point on the edge of the wheel follows the path shown in

figure 7.1.

Figure 7.1

How would you describe this path? What are its important features??

Locus

Many curves were first studied as a result of locus problems. They are the

paths of moving points, like the point on the wheel of a train. Three locus

problems are described on the next page. For each one think about the path

traced out by the point P.
138
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A and B are two fixed points in a plane. P moves in such a way that its
distance from A is always double its distance from B.

Figure 7.2

P is a point on the rim of a circular coin as it rolls around another coin of the
same size.

Figure 7.3

A circle, S, has diameter 2a. A is a fixed point on S and Q moves around S in a
clockwise direction from A. P lies on the chord AQ produced, at a fixed distance
a from Q.

Produced means
extended.

Figure 7.4

According to the nature of the locus problem, a particular form of approach

(cartesian, parametric or polar) may be more appropriate than the others. The
three examples above will be used to illustrate this point.

Cartesian equations

A and B are two fixed points in a plane. P moves in such a way that its distance

from A is always double its distance from B.

Figure 7.5
139
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Let the two fixed points A and B have co-ordinates (0, 0) and (a, 0).

The point P satisfies the equation PA = 2|PB| and so the path it traces out has

equation

squaring both sides

simplifying

So

Therefore the locus of P is a circle, centre and radius a.

Figure 7.6

In this case the curve is well described by the cartesian equation.

Show that the requirement PA = fc|PB| leads to a circle for any value of k > 1,

Parametric equations

P is a point on the rim of a circular coin as it rolls around another coin of the

same size.

Initially let the coins, with radius r, be lined up in the position shown in

figure 7.7, with their centres on the x axis and P at A.

Figure 7.7

140
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Polar equations

A circle, S, has diameter 2a. A is a fixed point on S and Q moves around S in a
clockwise direction from A. P lies on the chord AQ produced, at a fixed distance
a from Q.

What are the cartesian co-ordinates of the point Q??

Figure 7.9

In this case the parametric approach has allowed us to describe the locus
efficiently.

Figure 7.9 shows the fixed coin and the path of P.

x = 2rcos T — rcos2T, y = 2rsin T — rsin2T.

Figure 7.8

Then OP = OC + CP
equations

giving the parametric

Since the coin rolls without slipping, the arc lengths BA and BP in figure 7.8
must be equal and so T = (p. 7
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Figure 7.12

Converting between forms

In the final example above you saw that the polar equation of the curve was
r = 2acos 9 + a. The complete curve, taking the full range —n < 9 < n, is a
curve called a lima$on and is shown in figure 7.12.

If you used values of 9 across the whole range —n^O^n, what would the
graph of r = 2a cos 9 + a look like?

?

One possible position of P is shown in figure 7.10.

7

Figure 7.10

It is easy to find the equation of this curve using polar coordinates.

Start by taking A as the pole. Then AB is a diameter, the angle AQB is a right
angle and so |AQ| = 2acos 9.

Therefore |AP| = 2 a cos 9 + a and so the polar equation of the curve traced out by
P is r = 2a cos 9 + a. Since Q starts at A and moves in a clockwise direction back

to A, 9 goes from to The path of P, along with the circle S, is shown in

figure 7.11.

Figure 7.11

You might like to model the path of P using dynamic geometry software.



In Chapter 2 of this book you met the convention of using dotted lines for
negative values of r. In this chapter you are looking at the curves as a whole
rather than the process of drawing polar curves. For this reason you are not
required to use the dotted line convention but may choose to do so if you wish.

You can derive the cartesian equation of this limacon from the polar equation in
the following way.

Rearrange the polar equation to give

To find the parametric equations of the limacon,
substitute r = 2a cos 9 + a into both x = r cos 9
and y = r sin 9.

Show that this leads to the parametric equations

x = a(cos T + cos2T +1), y = a(sin T + sin2T).

Why is a parameter other than 9 often used in parametric equations?

In this case the polar form gives the most elegant equation.

Being able to convert from one form to another is a useful skill and will be used
throughout this chapter.

Parametric <-> cartesian

You can convert certain parametric equations into cartesian equations by
eliminating the parameter, for example

You can also convert a cartesian equation into an equivalent parametric form if

• either the cartesian equation is in a relatively straightforward form, for example

Try drawing both of
these on your calculator.

143
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Then
multiplying each term by r

substituting x = r cos 0

and r = V*2 + y2

?

?



• or the cartesian equation is in a form which can be compared with a known
identity. For example, comparing the circle x2 + y2 = a2 with the identity
cos21 + sin21 = 1 gives the parametric equations of the circle

Cartesian <-> polar

In Chapter 2 of this book you saw how to convert cartesian equations to polar
equations, and vice versa, using the substitution x = r cos 9 and y = r sin 9. For
example

In this case you could use a combination of the techniques above (using the cartesian
form as an intermediate step) or, when converting from polar to parametric form,
you could substitute r = f(9) in x = r cos 0, y = r sin 9. For example

Many equations, such as the parametric equations x = e *(\ -\-1), y = t -\- cos t
cannot be converted into other forms.

Figure 7.13 summarises these techniques.

Figure 7.13
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and

Parametric <-» polar

When converting from parametric
to polar form, you are advised to
convert to cartesian form first.

Sometimes it may be more
convenient to substitutes = rcosO,
y = rsinO in r = f(0) (as with the

limacon on page 143).



Notice that, in general, the parameter used in the parametric equations should
not be confused with the angle 9 in the polar equation. To see why, think about
the curve with parametric equations x = 3 cos T, y = 2 sin T.

For a point P(3 cos a, 2 sin a) on the curve in figure 7.14, a has no direct
relationship with the angle 9 that the line OP makes with the positive x axis.

Figure 7.14

Had the parametric equations been given as

x = 3 cos 9y y = 2 sin 9

then it would be incorrect to say that the polar equation was

The polar curve r2 = 4 + 5 cos2 9 and the curve defined by the parametric
equations x = 3 cos T, y = 2 sin T are not the same, as shown in figure 7.15.

Figure 7.15

Each form, cartesian, parametric or polar, can give new insights into the nature

of the curve. You will find this useful when analysing curves later in the chapter.
In the following exercise you will practise converting between the three forms.
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10 The folium of Descartes has parametric equations

146

All the graphs you will be asked to draw in this chapter can be drawn using a
graphic calculator. However, for your convenience, if you have access to a computer
you are encouraged to use graph-plotting software.

After completing each question, draw the graphs on your calculator or computer (by
allocating particular numerical values to the constants a, c, I, etc. where
appropriate) to check that the two forms give the same graph.

7

Find the cartesian equation of this curve.

Convert these into
(i) cartesian form
(ii) polar form.

9 The right strophoid has parametric equations

1 Convert the parametric equations given into cartesian form.

2 Convert the polar equation into cartesian form.

3 Convert the polar equation r = 3 sin 20 into
(i) parametric form
(ii) cartesian form.

4 Convert the polar equation r = 2atan 9 sin 9 (known as the cissoid of
Diodes) into cartesian form.

5 Convert the parametric equations into cartesian form.

6 Convert the polar equation r = 2a tan 9 sin 9 into parametric form
(i) giving x and y in terms of the parameter 9
(ii) giving x and y in terms of the parameter ty where t = tan 9.

7 Explain the connection between your answers to Questions 4, 5 and 6.

8 The witch ofAgnesi has parametric equations x = at.

Find the cartesian equation of this curve.

EXERCISE 7A



Explain why the following equations all give the trisectrix of Maclaurin.

12 (i) Write down the cartesian equations of the straight lines A, B, C and D
shown below.

(i i) By using the substitution x = r cos 9, y = r sin 9 write down the polar
equations of lines A, B, C and D in the form r = f(9).

( i i i ) Comment on the relative simplicity of the cartesian and polar equations
of straight lines.
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11 The trisectrix of Maclaurin has polar equation

7



13 The Maltese cross, shown
in the diagram, has cartesian
equation

Notice that the Maltese
cross includes the
(isolated) point (0, 0).

(i) By using the substitution x = r cos 0, y = r sin 0, show that this can be
written in polar form as r2 sin 49 = 4.

(ii) On your calculator draw the polar curves r = and r = 2.

( i i i ) Using your answer to part (i) explain how you know that the curve
xy(x2 — y2} = x2 + y2 and the circle x2 + y2 = 4 touch but do not cross.

14 The eight curve has polar equation
(i) Draw the polar curve r = sec2 0Vcos 29 on your graphic calculator.
(ii) Sketch this polar curve, clearly showing the points where it crosses the

initial line.
( i i i ) Using x = r cos 0> y = r sin 9 and r2 = x2 + y2, show that the cartesian

equation of the eight curve is 
(iv) Show that the curve with parametric equations y

y = t\/\ — t2
y where 0 < t < 1, gives that part of the eight curve which

lies in the first quadrant.

A point P lies on this curve. The cartesian co-ordinates of P are
(y7! — p2, p^/l — p2). The polar co-ordinates of P are (R, a).
(v) Find, in their simplest forms, equations connecting

(a) p and R (b) p and a.

Features of curves

This section explores the links between the shape of a curve and the equation or
equations describing it. You have already met even, odd and periodic functions.
In this chapter you will meet many other important properties of curves,
including symmetry, nodes, cusps, dimples, loops and asymptotes.

Sketch the curves of the functions f(x) = cos 3x and g(x) = sin2x. Using f(x)
and g(x) as examples, explain the terms even function, odd function and
periodic function, describing the symmetry properties of the curves.
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To start you will investigate two curves, one parametric, the other polar. In each
case you are required to think about the accompanying questions. By the end of
this section you will know the techniques required to analyse these curves. Begin
by exploring them for yourself.

INVESTIGATION

Parametric curves

The parametric equations for a simplified fairground ride are

These equations give the curve shown in figure 7.16.

x = 4cos T + 2cos3T, y = 4sin T + 2sin3T.

This is the example used in
A2 Pure Mathematics, Chapter 9

to model the path of a chair in
a fairground ride.

Figure 7.16

Think about the relationship between the shape of the curve and the equations
describing it.

(i) What are the co-ordinates of the points A, A7, B and B7?
(ii) The curve is symmetrical about both axes. How do you account for this?

y = 4 sin T + 2 sin 3T gives the node (or 'crossover point') labelled C. What

are the values of the parameter T at the node C7?

Now use your calculator to draw the curve.

( i i i ) Substituting in x = 4 cos T + 2 cos 3 T,and

This investigation, like many other questions in this chapter, involves circles. It
is good practice to use the 'equal aspect' or 'square' facility on your calculator so
that circles do indeed appear circular.
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(iv) As T increases from 0 to 2n how does the curve unfold? Is the range 0 to 2n

necessary, or do values of T from 0 to n give the entire curve?

Look at figure 7.17, which shows the graph
and two circles, centre the origin, with
radii 2 and 6.

Figure 7.17

(v) The curve touches the two circles but does not cross them.
Explain how you can predict this from the equations.

Polar curves

The curve r = 1 + 2 cos 9 is shown in figure 7.18.

Figure 7.18

(i) What are the polar co-ordinates (r, 9) of the points A and B?
(i i) As the curve unfolds it passes through the pole twice. What are the two

values of 9 corresponding to this point?
( i i i ) Think about the curves r = 1 + cos 9 and r = 1 + 3 cos 9. Do you expect

them to be significantly different from the curve r = 1 + 2 cos 0?

On your calculator plot the curves for r = 1 + bcos 9 for b = 1, 2, 3.

(iv) What insight has this given you into the role of b in the shape of the curve
r= 1 + &cos0?

The questions above all relate to members of a family of curves called lima$ons;

that is, curves of the form r = a + bcos9. The special case a = b gives the curve
in figure 7.19.

You met the limagon
with b = 2a on page 142.

Figure 7.19

(v) Think about a point P moving along the lima^on. What happens to the

tangent to the curve at P as P passes through the pole?
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Parallel curves

The cartesian curves y = 1 + f(x) and y = f(x) could be said to be, in one sense,
'parallel': for every value of x the curves are separated by a vertical distance of
one unit (see figure 7.20).

Figure 7.20

Is there a similar relationship between the polar curves r = 1 + 2 cos 9 and
r = 2 cos 9 shown in figure 7.21?

Figure 7.21

The concept of parallel curves is not required in this module. Strictly speaking,
two curves are parallel if every normal to one of them is a normal to the other
and the distance between the points where the normals cut the two curves is a
constant.

Loops, cusps and dimples

Figure 7.22 shows the curve r = k + cos 9 for three values of k.

Figure 7.22

The curve with k = 0.5 contains a loop, that with k = 1 a cusp, and that with
k= 1.5 a dimple. Many other curves, and families of curves, whether polar,
parametric or cartesian, display these features.
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Figure 7.24

7
Note

At a cusp, two arcs of a curve meet. Tangents at points on the two arcs become

progressively closer to each other as the points approach the cusp. You do not

need to know how to analyse cusps using calculus, but you will need to recognise

them.

The following example concerns epicycloids: curves generated when one circle
rolls around the outside of another. (You met an epicycloid on page 140.) The
example derives the parametric equations governing the path of a point on the
rotating circle and then uses these to find the co-ordinates of the cusps.

EXAMPLE 7.1 A circle of radius r rolls, without slipping, around the outside of a circle of
radius R in an anticlockwise direction. Initially the point P on the smaller circle
coincides with A on the larger circle as shown in figure 7.23.

Figure 7.23

(i) State the maximum and minimum distances of P from the origin.
(i i) Show that the parametric equations describing the path traced out by P are

( i i i ) Using your calculator draw the curve with these parametric equations using
the values r = 1 and R = 3. On the same diagram draw the circle, centre the
origin, radius 3.

(iv) Using your answer to (i), or otherwise, work out the co-ordinates of the
cusps on this curve.

(v) With r = 1, a different value of R results in the curve shown in figure 7.24.
State the value of R used here and find the co-ordinates of the points where
this curve crosses the x axis.
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Figure 7.27

Substituting leads to the parametric equations

SOLUTION

(i) The minimum distance is R, as in the initial position, and the maximum
distance is R + 2r when the line OP passes through B, the point of contact
of the two circles (see figure 7.25).

7

Figure 7.25

Minimum distance = R Maximum distance = R + 2r

(ii)

Figure 7.26

Since the circle rolls without sliding, the arc lengths BA and BP must be

equal. Therefore, with T and <p measured in radians, we have RT = r<p.



Figure 7.29

The x axis intercepts are at (1, 0) and (—3, 0). (These are the points where
the point of contact of the circles lies on the line OP.)
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( i i i ) With r = 1 and R = 3 the curve is as shown in figure 7.28.

Figure 7.28

(iv) There are three cusps. In this example they occur at the points where the
curve is at its minimum distance of 3 units from the pole.

The cusp marked A is at the point (3, 0) and the co-ordinates of the other
cusps can be found using trigonometry and the symmetrical nature of their
positions:

(v) R = 1. In other words, the circle rolls exactly once around the fixed circle
(see figure 7.29).

B(-3cos60°, 3 sin60°)

C(-3cos60°, -3 sin60°)
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INVESTIGATION

In Example 7.1 you found the locus of P. Now think about the locus of a point
M which lies on the line CP (produced if necessary) at a fixed distance from C.

Figure 7.30

Find the parametric equations describing the path of M and use your graphic
calculator to investigate the following statement.

clf |CM| < |CP|, the path traced out by M features 'dimples' (as in figure 7.3la)
whereas if |CM| > |CP| the path features 'loops' (as in figure 7.31b).'

These are called
epitrochoids.

Figure 7.31

Symmetry and nodes

It is often the case that as a curve is traced out, it crosses over itself. These points
are called nodes (or crossover points).

For parametric curves, if two values of the parameter correspond to the same
pair of co-ordinates then this is a node. Example 7.2 illustrates a method for
finding the co-ordinates of such points using the symmetrical nature of the
curve in question.

155



7
EXAMPLE 7.2 Figure 7.32 shows the curve with parametric equations x = sin2t, y = sin3t.

Figure 7.32

Draw this curve on your calculator, noticing the symmetry in both the x and y axes.

(i) What range of values for t is necessary in order to plot the entire curve?

The substitution t —> n — t corresponds to a reflection in the y axis:

x = sin 2(71 — t) = sin (2n — 2t) = — sin 2t,
y = sin 3(7i — t) = sin (37i — 3t) = sin3t

(i i) Find the substitution that corresponds to a reflection in the x axis.
( i i i ) Find the co-ordinates of the points where the curve crosses the x axis and

the corresponding values of t.
(iv) Using your answer to part ( i i i ) and the graph, write down the two pairs of

values of t corresponding to the nodes A and B.

From the graph the other nodes appear to lie on the lines

(v) Working with this assumption, find the co-ordinates of the node in the first
quadrant and verify that two values of t in the range 0 < t < n do indeed
give this point.

SOLUTION

(i) 0 < t < 2n.

(i i) As the curve is plotted on the calculator it can be seen that the relevant
substitution is t —» t + n:

x = sin 2(t + TI) = sin (2t + 2n) = sin 2t,
y = sin 3(t + n) = sin (3t + 37i) = — sin 3t

Figure 7.33
156
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Figure 7.34

Tracing out the curve as t increases from t = 0 at the origin we require the
first and fourth times the curve passes through the line

Therefore the node is and this corresponds to the values of the

parameter and

Use your calculator to plot the curve x = sin 2t, y = cos 3t. Explain the
similarities and differences between this curve and the curve with parametric
equations x = sin 2t> y = sin 3t.

ACTIVITY 7.2
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Asymptotes

In AS Further Pure Mathematics (FP1), Chapter 3 you looked at horizontal and

vertical asymptotes of cartesian graphs. For example, you should be able to

explain why the graph in figure 7.35 has a horizontal asymptote

of y = 4 and a vertical asymptote of x = 3.

Figure 7.35

Being able to find horizontal and vertical asymptotes is important. If you feel

unsure about this you should refer to your FP1 textbook.

The next example introduces oblique asymptotes.

EXAMPLE 7.3 The graph with parametric equations is shown in

figure 7.36.

This is called an
oblique asymptote.

It is not parallel
to either axis.

Figure 7.36

158

Draw this graph on your calculator, paying attention to the way in which it

unfolds as the value of the parameter t increases from —5 to 5.

(i) State the equation of the vertical asymptote.

(i i) By eliminating t, show that the cartesian equation of the curve is

Write this in the form where A, B

and C are constants, and explain how this gives the equation of the oblique

asymptote.
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7
SOLUTION

(i) It can be seen from the calculator that the vertical asymptote is

Note

A more analytical approach involves thinking about

as t approaches 1.

As t —> 1 from above, becomes increasingly large and negative.

As t —> 1 from below, becomes increasingly large and positive.

When t= 1, Therefore the vertical asymptote is

Therefore

Notice that, as

showing that the vertical
asymptote is as in part (i).

Thus the equation of the oblique asymptote is y = 2x + 1. Figure 7.37
shows the graph and the oblique asymptote y = 2x + 1.

Figure 7.37

Use the quotient rule on to find

What is the significance of the limiting value of as x —» oc?

thenSince
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Families of curves
All the parallel lines of the form y = 3x + c can be thought of as belonging to a
'family' of lines, the common property being that they all have a gradient of 3.

? 

Figure 7.38

In the investigation on page 149, you looked at the curve with parametric
equations

x = 4 cos T + 2 cos 3 T, y = 4 sin T + 2 sin 3 T.

This curve can be thought of as one of the family of curves described by the

equations

x = 4 cos T + 2 cos nT, y = 4 sin T + 2 sin nT.

When n = 3 these give the 'fairground ride' curve in figure 7.39.

Figure 7.39

160

What is the common property of the family of quadratics shown in figure 7.38?
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Other values of n give very different graphs, as shown in figure 7.40.

Figure 7.40

7

?
or loops each graph possesses?

From this we can see that

Therefore each graph will be bounded by the circles of radii 2 and 6, centre the
origin.

the maximum distance from the origin is y20 + 16 = 6 units and
the minimum distance from the origin is \/2Q — 16 = 2 units.

The important question to ask yourself is

• How does the value of n influence the general shape of the curve?

For this particular family of curves it is helpful to consider x2 + y2. As with all
cartesian and parametric curves, this expression gives the square of the distance

of a point on the curve from the origin.

With

x = 4 cos T + 2 cos nTy y = 4 sin T + 2 sin nT

we have

How does x2 + y2 = 20 + 16 cos (n — 1) T help to explain the number of cusps
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7 

The parametric equations on the previous page can be modified to give other
families of curves.

Family A: x = 4 cos T + k cos nT, y = 4 sin T + k sin nT

Family B: x = 4 cos T — k cos nT, y = 4 sin T — k sin nT

Family C: x = 4 cos T + k cos nT, y = 4 sin T — k sin nT

Using various values for k and n, explore these families using a graph-plotting
package.

How do the values of k and n affect the shape of the graph?

Finally, a word of warning.

Suppose you were asked to decide which graph in figure 7.41 shows the curve

known as the trident, without using your calculator.

Figure 7.41

Although these four graphs look very different they are all a result of entering

on a graphic calculator and choosing different ranges for the axes.

The correct one is graph C, shown here with the axes limits set at

- 3 < x < 3 , - 7< /<7 .

The other ranges used are

(i) -0.1^x^0.1, -100^/^100
(i i) -3 < x < 3, -2 < y < 2
( i i i ) -50 < x < 50, -1000 < y < 1000.

Without using your calculator, match these with graphs A, B and D.

When using your calculator to investigate curves it is important that you are

aware of the limitations of the calculator (as seen in graph A) and the
importance of ensuring that the range you choose (for x, y, 0, etc.) does give the
whole picture.

ACTIVITY 7.3
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r = 3(1 + cos 20)y = 3(1 + COS2*)

/max = 6

/min = 0

y has period X 271

y is an even function

(a) y = 3(l+cos2x)

(i) Use the cartesian graphs below to think about the properties of the

corresponding polar curves, including cusps, loops and rotational

symmetry. Copy and complete the tables (without using your calculator

to draw the polar curves).

Cartesian: y — 4 + 2 cos 3x

/max = 4+ (2 X 1 ) = 6

ymin = 4 + ( 2 X -1)=2

/ = 4 + 2 cos 3x is periodic,

Polar: r = 4 + 2 cos3 0

r = 4 + 2 cos 30 touches circle r

r = 4 + 2 cos 30 touches circle r

= 6

= 2

r = 4 + 2 cos 30 has rotational

symmetry of order 3with period X 271

1 Look at the graphs of y = 4 + 2 cos 3x and r = 4 + 2 cos 30 and the table

showing their related properties. 7
EXERCISE 7B
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(i) Find the closest distance from the origin to the curve in terms of n.

(ii) Describe the curve as n —» oc.

7
(b) 7 = 1 + 2 cos x

y — 1 + 2 cos x r = 1 + 2 cos 0

Xmax = 3

/min = "I

/ has period 2n

y < 0 for

(ii) Check your answers by plotting the polar curves r = 3(1 + cos 20) and

r = 1 + 2 cos 9 on your calculator.

2 The curves with parametric equations x = cos t(l + cos2n t),

y = sin t( 1 + sin2n t) are shown below for different values of n.



165

7and oblique asymptotes.

3 The diagram below shows the graph of and its vertical

(i) Express in the form

(i i) Write down the equations of the vertical and oblique asymptotes of the

graph Check your answer by drawing them on your

calculator.

( i i i ) Find all the asymptotes (horizontal, vertical and oblique) of the
following graphs.

4 (i) Show that x = cos T, y = sin T are parametric equations for the curve

(i i) Draw a sketch of this curve for 0 < T < 2n. The curve is an astroid.

Now investigate the family of curves of the form x = db cosn T, y = db sinn T,
starting with cases for which n ̂  0.

( i i i ) Explain why the parametric equations include the db signs.
(iv) Find the values of n for which the curve is

(a) a circle (b) a point

(c) a square at an angle of to the co-ordinate axes.

(v) Describe what happens to the curve in the cases when
(a) n —» +oc (b) n —» 0, for positive values of n.

(vi) Complete your investigation by drawing some typical members of the
family of curves for negative values of n.



7
5 A circle of radius r rolls around the inside of a circle of radius 4r.

Arc lengths PA and
AB are equal.

Therefore r(p = 4rT.

(i) Using the diagram, show that the co-ordinates of P are

(3rcos T+ rcos(4> — T), 3rsin T — rsin(</> — T)).

(ii) Eliminate </> (by using r</> = 4rT) to show that the parametric equations
for the locus of P are

x = 4rcos3 T, y = 4rsin3 T.
( i i i ) Draw this curve on your calculator using the value r = 1.

If the radius of the smaller circle is increased to 3r, the parametric equations
become

Initial position General position

(iv) Draw this curve on your calculator and explain, with reasons, the

similarities and differences between this and the curve in part ( i i i) .
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6 (i) State the type(s) of symmetry which each curve below possesses, and

prove this algebraically.

(a) y2(y2 - 96) = x2(x2 - 100) (the electric motor)

(b) x4 + x2y2 + / = x(x2 - y2) (the trefoil)

(c) x3 + y3 = 3axy (the folium of Descartes)

(i i) The parametric equations for the folium of Descartes are

Let the point on the curve with parameter t have co-ordinates (x, y}.

167

Show that the point with parameter has co-ordinates (yy x). What

does this imply for the symmetry of the curve?
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7 (i) Explain the effect that the matrix

plane.
has on points in the

The Maltese cross, shown below, has cartesian equation
xy(x2 -y2) = x2 + v2.

(ii) Prove that if the point P(a, b) lies on the curve then the point Q(c, d)

where also lies on the curve.

( i i i ) Explain the geometrical significance of your answer to part (ii).

8 A curve, C, has parametric equations x = sin T, y = cos T.

(i) Describe C.

C is transformed into a family of curves by the matrix for

different values of k (positive and negative).

(ii) Enter several members of the family onto your calculator and then

describe the family.

( i i i ) Justify your answer to part (ii) using algebra and trigonometry.
(iv) Prove that C is the smallest member of the family.

9 (i) Enter the parametric equations x = 2 sin t + sin 3t, y = sin 2t + sin 4t

into your graphic calculator. Plot the curve and notice how the curve

unfolds as t increases from 0 to 2n.

168
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7
(i i) Explain carefully how substituting n + t and n — t for t shows that the

curve is symmetrical in both the x and y axes.

In addition to t = 0, t = n and t = 2n> which give the node, or crossing
point, at the origin, there are six other values of t in the range 0 < t < 2n

that correspond to points where the curve cuts the x axis.

( i i i ) Find the six values of t corresponding to points on the x axis, and find
the co-ordinates of these points. State clearly which pair of values of t
correspond to each of the nodes.

10 (i) On your calculator draw the circles centre the origin, with radius 1 and
radius 3. You may wish to set the axes so that these do indeed look like
circles.

(i i) By considering x2 + y2, or otherwise, prove that the curve with
parametric equations

x = 2 cos T + sin fcT, y = 2 sin T + cos kT

will touch but not cross these circles for any positive integer value of k.

( i i i ) On your calculator draw the curve

x = 2 cos T + sin 2T, y = 2 sin T + cos 2T,

along with the two circles.

(iv) Using part (ii) and the symmetrical properties of the curve, calculate the
co-ordinates of the cusps. You may assume that the curve possesses
rotational symmetry.

The diagram below shows the two circles and the curve with parametric

equations

x = 2 cos T + sin 4T, y = 2 sin T + cos 4T.

(v) Let the node on the y axis have co-ordinates (0, a). Express in terms of

a the co-ordinates of the node in the first quadrant.
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7
The diagram below shows the graphs of

x = 2 cos T + sin kT, y = 2 sin T + cos kT for k = 3 and k = —5,

both of which possess rotational symmetry of order 4.

(vi) Experiment with curves of this form on your calculator. Write down the

two values of k which would give graphs with rotational symmetry of
order m.

11 A family of curves has parametric equations

x = sin 9 + a cos b9> y = cos 9 + a sin W

where a and b are integers with a ̂  2 and b ̂  1. One member of this family

of curves is shown below.

(i) Given that, for this particular curve, a = by find the values of a and b

and plot this curve on your calculator.

(ii) The curve crosses the x axis at three points: (—3, 0), (—1, 0) and one
other point. Calculate the exact co-ordinates of this third point.

You may assume that this curve has rotational symmetry of order 3.

( i i i ) Using your answer to part (ii), write down the exact co-ordinates of the
three nodes on the curve.
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Think about the general curve with parametric equations

x = sin 9 + a cos b9y y = cos 9 + a sin W.

(iv) Find expressions in terms of a for the greatest and least distances from
the origin to this curve. Hence give the equations of the two circles
which the curve touches but does not cross.

(v) Explain briefly in words the effect that
(a) changing a has on the curve (b) changing b has on the curve.

INVESTIGATION

The superellipse

On your calculator or using a graph-plotting package, experiment with curves of

the form \x\n + \y\n = 1. Using a calculator, you will probably need to enter the
two curves y = (1 — x\n)^ and y = —(I — \x\n)^ (with your own choice of ri)

and set the limits — 1 < x < 1 and — 1 < y < 1. (Your calculator may use the
terminology cabs(x)' for \x\.)

When n = 1 the curve is a square and n = 2 gives a circle (see figure 7.42).

Figure 7.42

What happens for large values of n?

Which value of n do you think gives the most aesthetically pleasing curve?

When n = 2.5 the curve is a superellipse, shown in figure 7.43.

Figure 7.43

If you extend your search to curves of the form

gives the most pleasing shape now?

what ratio
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Historical note

The term 'superellipse' was coined by the Danish mathematician, philosopher and poet Piet Hein. He

believed that the superellipse was the most aesthetically pleasing shape to the human eye, being a

compromise between the circle and the square. Many architects and designers agree and have used

the superellipse in their work.

Using calculus

So far you have looked at features of curves which can be found by algebraic

techniques. In this section you will see the role that calculus plays in analysing

curves.

For curves described by cartesian equations you know that stationary points are

the maximum and minimum distances of the curve from the origin (or pole)

points on curves where the tangent is parallel or perpendicular to the x axis

(or initial line)

the equations of the tangent and normal to a curve at a given point.

also used to find

found by solving the equation In this section calculus techniques are

?

(i i) For parametric curves, what is the geometrical significance of points where

Distance from the origin or pole

For cartesian and parametric curves the maximum and minimum distances of

the curve from the origin can be found by considering extreme values of x2 + y2

as on page 161.

For polar curves is the rate of change of r with respect to 9. At those points

where the value of r reaches a maximum or a minimum value then

(i) For polar curves, what is the geometrical significance of points where
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?

As an example think about the curve with polar equation r = a + b cos 9 where

a > by shown in figure 7.44.

Figure 7.44

Differentiating r = a + b cos 9 with respect to 9 gives = — b sin 9. To find the

maximum and minimum values of r, solve the equation This gives

sin 9 = 0 and so cos 9 = v 1 — sin2 9 = ±1. Finally, substituting these values oi

cos 9 into r = a + b cos 9 gives rmax = a + b when cos 9=1 and rmin = a — b

when cos 9 = — 1.

Note

For this particular example it is possible to find the maximum and minimum

distances from the curve to the pole without using calculus. Since the range of

values taken by cosO is -1 < cosO < 1, then the maximum distance from the pole

to the curve is rmax = a + 6(1) = a + b and the minimum distance is

fmm = a + b(-D = a - b. These, not surprisingly, agree with the maximum and

minimum distances of the curve from the pole found using calculus.

The curve r = 3 + cos 9 + sin 9 is shown in figure 7.45. What are the maximum

and minimum distances of the curve from the pole?

Figure 7.45

Maxima and minima

Returning to the fairground ride curve on page 149, the parametric equations

x = 4cos T + 2cos3T, y = 4sin T + 2sin3T

give the curve in figure 7.46.
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Figure 7.46

As the point P moves around this curve the tangent to the curve at P is parallel
to the x axis at six points. At each of these points the rate of change of y with

respect to T is zero, i.e.

In order to solve the equation i you first need to find in a useful form.

cos 3T = 4 cos3 T — 3 cos T

Therefore, when

Using the trace function on your calculator, verify that the points on the

curve corresponding to these values of T are indeed the points where the
tangent to the curve is horizontal.

What are the advantages of solving rather than?

Similarly, at the points where the tangent is vertical, the rate of change of x with
respect to T is zero.

the tangent to the curve is parallel to the y axis.

and so find the co-ordinates of the points on the curve at whichSolveACTIVITY 7.4
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Gradients: tangents and normals

You already know how to find the equations of the tangent and normal at a

point on a cartesian curve. For example, on the curve y = 2x3,

the gradient of the curve at the point Therefore the

and so

tangent is and the normal is

Figure 7.47

As with cartesian curves, you can find the equations of the tangent and normal

at a point on a curve defined parametrically.

EXAMPLE 7.4 A circle of radius a rolls along a straight line.

(i) Draw a rough sketch of the path followed by a point on the circumference

of the circle highlighting any important characteristics.

Figure 7.48 shows the general position of the circle where the centre of the circle,

C, has moved from its initial point with co-ordinates (0, a) to the point with co-

ordinates (d, a). The point marked P was initially at the origin O.

Figure 7.48

Let ZPCQ = T.

(ii) By using the fact that the arc length PQ is equal to the length of the line

OQ, show that the parametric equations of the curve traced out by P are

x = a(T — sin T), y = a(l -COST).
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This curve is called a cycloid. The tangent to the cycloid gives the direction in
which the point P is moving.

( i i i ) Find the equations of the tangent and normal to the cycloid at the point
with co-ordinates (a(T — sin T), a(\ — cos T)). Show that the normal passes
through the point with co-ordinates (aT, 0) and explain the geometrical

significance of this point.

SOLUTION

(i) The curve is symmetrical about the line x = na and the highest point has

co-ordinates (na, 2a), as in figure 7.49.

Figure 7.49

(i i) ZPCQ = T radians and |OQ| = d.

Since the arc length PQ is equal to the distance OQ, then aT = d. Referring
back to figure 7.48,

Xp = d — a sin T = aT — a sin T and y? = a — a cos T.

Therefore, the parametric equations of the cycloid are

x = a(T — sin T) and y = a(\ — cos T).

sin T. Thereforeand

The equation of the tangent is

and the equation of the normal is

Substituting y = 0 shows that the point (aT, 0) lies on the normal.
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Figure 7.52

Using your calculator, find the value of c to an accuracy of 2 decimal places.

L is of the form

Figure 7.52 shows the curve r = sin 9 for

P is a point on the curve and

L is the tangent to the curve at P.

On your calculator draw the curve r = sin 9

for

Given that the line L makes an angle of with

the initial line, show that the polar equation of

e

T 

Finding the equations of the tangent and normal to a polar curve is beyond the
scope of this book. As seen in Question 12 of Exercise 7 A, straight lines
(including tangents and normals) do not lend themselves to being expressed in
polar form. The following activity shows how you can use your calculator to

find the equation of a tangent to a polar curve.

7
When the circle is in the position shown in figure 7.50, (aT, 0) is the point
where the circle touches the line.

Figure 7.50

e

Given that the area under the cycloid in figure 7.51 is

show that this area is three-quarters of the area of the containing rectangle.

Figure 7.51

ACTIVITY 7.5

ACTIVITY 7.6
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1 On your calculator experiment with polar curves of the form r = k + cos 9,

where k > 0.

When k = 1, the curve generated has a cusp.

(i) Write down the range of values of k for which the curve

(a) contains a loop (b) contains a dimple (c) is convex.
(ii) Using x = r cos 9 and y = r sin 9 find parametric equations for this

curve with parameter 9.

( i i i ) For those values of k where the curve contains a dimple, explain why
there must be four values of 9 between 0 and 2n satisfying the equation

(iv) By considering the number of values of 9 satisfying explain how

this shows that the curve makes the transition from having a dimple to
becoming convex when k = 2.

2 The diagram below shows the curve with parametric equations

x = sin2T, y = sin3T.

Enter these on your calculator, noticing the symmetry in both the x axis and

the y axis.

(i) The curve passes through the origin. Find the two values of T
corresponding to this, and the gradient of the curve for each of these
values.

(ii) Find the values of the parameter T between 0 and corresponding to

the points on the curve where the tangent to the curve is
(a) vertical (b) horizontal,
and use these to write down the co-ordinates at these points.

EXERCISE 7C
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3 The diagram shows the graph

of r = cos 9 + sin 9.

(i) Prove that the maximum distance

from the pole to the curve is \/2-

The graph of r = cosn 9 + sinn 9 is shown below for various positive integer

values of n.

( i i i ) Using your answer to part ( i i) explain why the maximum and minimum

distances from the pole to the curve r = cosn 9 + sinn 9 correspond to

(iv) In the case where n is an even integer, find the minimum distance from

the pole to the curve in terms of n.

4 On your calculator draw the curve with parametric equations

x = sin ty y = sin4t.

This is called a Lissajous curve.

(i) By using the trigonometric double angle formulae show that

sin24t = 16sin2 t(l - sin2 t)(l - 2sin21)2

and hence write down the cartesian equation of this Lissajous curve,

expressing y2 in terms of x.

(i i) Using your answer to part (i) or otherwise prove that the curve is

symmetrical in both the x axis and the y axis.

( i i i ) There are three nodes (or crossover points) on the x axis. Find their

co-ordinates and the corresponding values of the parameter t.

values of 9 which are multiples of
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(ii) The curve passes through the origin twice. Find the gradient of the two

branches of the curve at this point.
( i i i ) The tangent to the curve has gradient 0 at eight points. Show that at these

points the parameter t satisfies the equation 4 cos2 2t + cos 2t — 2 = 0
and use this to find the co-ordinates of the point marked A.

7
(iv) The horizontal tangents to the curve occur at points where Use

this fact to explain why the y co-ordinates of all points where the
tangent is horizontal are either 1 or — 1.

5 The graph with cartesian equation is shown below. The point

S has coordinates

(i) Draw this graph on your calculator.

The line passing through the point S with gradient m where m >
the curve at P and Q.

meets

(ii) Show that S is the mid-point of PQ and that the gradients of the
tangents at P and Q are both equal to 1 — m.

6 (i) Enter the parametric equations

x = 2 sin t + sin 3t, y = sin 2t + sin 4t

into your graphic calculator. Plot this curve, called a harmonograph, and

notice how the curve unfolds as t increases from 0 to 2n.
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7 (i) Draw the graph of on your graphic calculator (entering

and if necessary).

The curve has one vertical asymptote of x = 0 and two oblique asymptotes.

(i i) By considering the behaviour of y2 as x —» oc write down the equations

of these two oblique asymptotes. Check your answer by drawing these

oblique asymptotes along with the curve on your graphic calculator.

( i i i ) Calculate the co-ordinates of the two points on the curve where the

tangent to the curve is horizontal. Check your answer by using the trace

function on your calculator.

(iv) By using the substitution x = r cos Qyy=r sin 0, show that a polar form

of the curve is 2 = r3 cos 9 cos 29.

(v) Use this form to show that

Hence find the minimum distance from the origin to the curve. Check

your answer by drawing the circle with this radius, centre the origin, on

your graphic calculator.

8 The cardioid has polar equation

r = 2a(l + cos 9). A chord passes through

the pole and meets the cardioid at P and Q.

(i) Prove that, for any such chord, |PQ| = 4a.

(i i) Show that the parametric equations of the

cardioid are

x = a(2 cos 9 + cos 29 + 1), y = a(2 sin 9 + sin 29).

(iv) Prove that the tangents to the curve at P and Q are perpendicular to

each other.

(v) Using your answer to part ( i i i) , prove that there are exactly three parallel

tangents to the cardioid with any given gradient.

( i i i ) Find and and hence show that cot
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9 The graphs of and are shown below (for a > 0).

The folium of Descartes has parametric equations

(i) Write down the equation of the vertical asymptote in each case.

(ii) Draw the folium of Descartes on your calculator and, using the graphs

above or otherwise, describe the way in which the curve unfolds as t

varies from t = —10 to t = 10.

( i i i ) Find in terms of t and use this to show that as t —> — 1 the gradient

of the curve approaches — 1.

By considering the value of this expression as t —> — 1, deduce that

x + / + a = 0 isan oblique asymptote to the curve. (You can check this

result by drawing the line x + y + a = 0 and the curve on your

calculator for several values of a.)

(iv) Show that

10 The graph of is shown below for 0 < 9 < 2n. The tangents to the

curve are parallel and perpendicular to the initial line at B and C respectively.

(i) Using Maclaurin's expansion for sin x show that, for small xy

182

(ii) Show that

At point

and use this to write down the polar co-ordinates of

point A.



183

7
( i i i ) Using the Newton-Raphson method to solve

f(0) = 29cos9-sm9 = Qy

find the value of 9 at B to an accuracy of 5 decimal places and write
down the corresponding value of r sin 9.

(iv) Find the values of 9 and r cos 9 at point C.

11 The graphs of xn + yn = 1 for some values of n are shown below.

(i) Using your calculator, familiarise yourself with this family of curves for
values of n in the range 0 < n ̂  3.

A point P(p, q) lies on the curve xn + yn = 1.

(i i) Show that the tangent to the curve at P has equation pn~lx + qn~ly = 1.

This tangent crosses the axes at points A(X, 0) and B(0, Y).

(iv) Deduce that AB has constant length for all positions of P if and only if

( i i i ) Show that

(This is the astroid,

12 The line L makes an angle of with the initial line

(i) Show that the polar equation of L is of the form

The diagram below shows the curve r = sin 9 for 0 < 9 and the

straight line, L, with equation In the diagram, c takes

the value 1.
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Figure 7.53

The curve you have drawn is a parabola. The parabola can be thought of as one

of a family of curves characterised by a similar property. This property is

described in the following locus problem.

This diagram shows two
points on the curve,

corresponding to r = 5.

Focus-directrix property

On squared paper draw a set of parallel vertical lines 1 cm apart, and label one of

these d. Mark a grid point S 3 cm from d. Draw circles with centre S and radii

2, 3, ... cm. Mark the points of intersection of the circle with radius rcm and

the line r cm from d for several values of r. Connect these points of intersection

with a smooth curve.

Historical note

The Greek mathematician Apollonius of Perga (c.262-190 BC) wrote an eight-volume study of conies,

building on earlier work. The astronomer Johannes Kepler gave conies new importance when he

announced in 1609 that the orbits of the planets are ellipses, and in The Two New Sciences (1638)

Galileo Galilei showed that the path of a projectile is a parabola.

The family of curves called conies takes a central place in mathematics, having a

long history, a rich geometry, and many important applications. You have

already met some members of the family: parabolas, ellipses and hyperbolas.

This section shows that these curves truly are a family, and explores their

similarities and differences.

Conies

7
(ii) Using your calculator find, by trial and improvement, the value of c, to

an accuracy of 1 decimal place, which results in L being a tangent to the

curve r = sin 9.

( i i i ) Express the curve r = sin 9 and the straight line in

cartesian form, and hence find the exact values of c for which the line is

a tangent to the curve.

ACTIVITY 7.7
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Figure 7.55

The polar equation of the curve follows directly from the property |PS| = e|PM|:

Since both e and k are constants, their product, ek, can be replaced by another

constant /, giving the polar equation

Figure 7.54

When e = 1 the procedure to find the locus is the same as the one you used in
Activity 7.7. Therefore the curve is a parabola.

Adapt the method used in Activity 7.7 to draw the curves f o r e = ^- and e = 2,

and explore the curves generated by other values of e.

A natural way to attempt an analysis of this family of curves is to use polar co-
ordinates, taking the point S as the pole and the line through S which is

perpendicular to d as the initial line. In the terminology of conies, the point S is
called the focus of the conic and the line d is called the directrix.

Figure 7.55 shows the focus S, the directrix d, and the point P, satisfying the
condition |PS| = e|PM|. The polar co-ordinates of P are (r, 9) and the
perpendicular distance from S to d is k.

M is chosen on
d so that PM is

perpendicular to d.

7
Figure 7.54 shows a fixed point S and a fixed line d. The point P moves in such

a way that, at all times where e is a constant called the eccentricity.

that is, |PS| = e\PM\.

ACTIVITY 7.8
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On your graphic calculator plot for / = 4 and

(i) e = 0 (ii) e = 1 (iv) e = 2.(iii)

What do you notice?

Now repeat this for / = 2. How does changing / affect the shape of the graph?

In general, what can you say about the curve

(i) e = 1 (ii) 0 < e < 1 ( i i i ) e > 1?

You can see from Activities 7.7, 7.8 and 7.9 above that the parabola, ellipse and
hyperbola are truly a family of curves. These curves are called the conic sections

and the family is defined in the following way.

A conic is the locus of a point in a plane such that its distance from a fixed
point S is a constant multiple of its distance from a fixed line d, both S and d

being in the plane.

They are called conies because they were originally studied as plane sections of a
right circular cone.

Figure 7.56

Figure 7.56 shows a double cone standing with its axis vertical. A horizontal
plane not through the vertex cuts the cone in a circle. When the plane is tilted
slightly the section is an ellipse. As the angle of tilt increases the section becomes

more elongated until, when the plane is parallel to a generator of the cone (i.e. a
straight line through the vertex in the surface of the cone), the section is a
parabola. With further tilting, the plane cuts the other half of the cone too, and
the section is a hyperbola. So the parabola is the borderline case, separating

ellipses from hyperbolas.

Cartesian equations of the conies

The method used in Activity 7.8 can be adapted to find the cartesian equations

of the conies. In order to ensure that the resulting equations are relatively simple186

Ellipse Parabola Hyperbola

ACTIVITY 7.9
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Figure 7.58

Let the line be the directrix and let the point (ae, 0) be the focus. Then

P(x, y) is on the ellipse SP = ePM (by definition)

The ellipse, 0 < e < 1

This is the cartesian equation of the parabola in its standard form.

7
it is helpful to choose specific positions for the directrix and the focus as
described below. (You could choose to work with the same focus and directrix
(as in Activity 7.12), but the equations turn out to be more cumbersome.)

The parabola, e = 1

Figure 7.57

Let the line x = —a be the directrix and let the point (a, 0) be the focus. Then

P(x, y) is on the parabola SP = PM (by definition)
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Figure 7.60

The hyperbola, e > 1

Figure 7.59

An ellipse can be drawn by passing a loop of thread around fixed pins at S and

S', and pulling this taut with a pencil pressed against the paper. As the pencil

moves, keeping the string taut, it draws an ellipse.

Draw some ellipses by this method. Describe the effect of changing the

separation SS' without changing the length of the loop.

PS + PS' = a constant.

An equivalent definition of the ellipse is the locus of a point P in a plane such that

the sum of the distances of P from two fixed points S and S' in the plane is fixed.

Given the equation for an ellipse how would you find the

eccentricity, the focus and the directrix?

?

This is the standard cartesian equation of the ellipse.

7 

The same ellipse results
if you use directix

and
focus (—ae, 0). The point (a, 0)

lies on the ellipse.

Since 0 < e < 1 it follows that a2(I — e2) > 0 and so you can replace this

expression by b2, giving

ACTIVITY 7.10
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Figure 7.61

The rectangular hyperbola

In the special case where a = b> the equation of the hyperbola is x2 — y2 = a2.

The two asymptotes are the perpendicular lines y = x and y = — x. For this
reason this hyperbola is called the rectangular hyperbola.

On your graphic calculator plot the hyperbola and the two straight

lines and for various values of a and b. You will notice

that the two lines are asymptotes to the hyperbola.

7
As with the ellipse, let the line be the directrix and let the point (aey 0) be

the focus. However, since e > 1, the directrix is now positioned between the
origin and the focus (see figure 7.60).

?
hyperbola is

Since e > 1, it follows that a2(I — e2) < 0 and so you can replace this expression
with — fc2, giving

This is the standard cartesian equation of the hyperbola.

By factorising, can be written as

It follows that the hyperbola has oblique asymptotes with equations

and (see figure 7.61).

Proceeding as with the ellipse, show that the cartesian equation for the

ACTIVITY 7.11
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7

Figure 7.62

?

So far you have worked with specific foci and directrices, which have resulted in

the standard cartesian forms for the conies. In Activity 7.12 you will see the

effect of using the same focus and directrix for each of the conies.

Using the y axis for the directrix and the point (a, 0) for the focus, show that

|PS | = e|PM| leads to the cartesian equation

Draw this on your graphic calculator (entering both y = y e2x2 — (x — a)2 and

y = — \/e2x2 — (x — a)2 with a fixed value for a). Investigate these curves for

various values of e > 0.

Parametric equations of the conies

The point P with co-ordinates (at2, 2at) lies on y2 = 4ax for all values of t:

In addition, every point of the curve corresponds to a unique value of t.

Therefore the equations x = at2, y = 2at can be used as parametric equations

for the parabola y2 = 4ax.

The standard cartesian and parametric equations of the conies are given in the

table below.

Cartesian form

Parametric form

Parabola
e= 1

Ellipse
0 < e < 1

Hyperbola
e> 1

Rectangular
hyperbola

y2 — 4ax

x = at2

y = 2at

x — a cos t

y — bsint

x — a sec t

y — b tan t

x — ct

xy — c

e=V2

Show that for the rectangular hyperbola the eccentricity is v 2.

ACTIVITY 7.12
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Figure 7.63

A focal chord is a chord which passes through the focus.

(iv) Prove that TU is a focal chord if and only if tu = — 1.
(v) Prove that the tangents at the ends of a focal chord meet at right angles on

the directrix (see figure 7.64).

7
In Question 1 of Exercise 7 A you demonstrated an equivalence between these
parametric and cartesian forms.

For the ellipse, in order to maintain a one-to-one correspondence between the
points on the curve and the values of the parameter t, you need to restrict values
of t to the range 0 < t < 2n.

What are the corresponding restrictions, if any, for the hyperbola and
rectangular hyperbola?

?

?

parametric equations x = a cosh t, y = b sinh t for the hyperbola. Enter these
parametric equations on your calculator and use this to explain why the
parametric equations x = a sec t, y = b tan t are used for the hyperbola in
preference to x = a cosh t, y = b sinh t.

Examples

EXAMPLE 7.5 The points T and U of the parabola y2 = 4ax have co-ordinates (at2, 2at) and
(au , 2au) respectively. Find the equation of

(i) the chord TU
(ii) the tangent to the parabola at T
( i i i ) the normal to the parabola at T.

Since cosh21 — sinh21 = 1, it would appear that we could use the hyperbolic



7

Figure 7.64

SOLUTION

(i) The gradient of TU is

The line through T with this gradient has the equation

(Note that this is symmetrical in t and u, as the geometry demands.)

(i i) The tangent at T is the limiting position of the chord TU as U —» T along

the curve, i.e. as u —> t. Letting u —> t in the equation of the chord (and
cancelling the common factor 2) gives the equation of the tangent:

x - ty + at2 = 0.

Alternatively, using calculus,

Therefore the tangent at T has equation

( i i i ) From part (ii) the gradient of the tangent at T is
normal is — t. The equation of the normal is

so the gradient of the
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Cancelling (u — t),
which is not zero since
T and U are distinct.

EXAMPLE 7.6 Find the equation of (i) the tangent (ii) the normal to the standard ellipse at
P(acos9, bsin9).

The equation of the normal at P is

193

(iv) The chord
only if

passes through the focus (a, 0) if and

(v) The gradients of the tangents at T and U are 

Therefore the product of the gradients is — 1, and so the tangents are
perpendicular.

The equations of the tangents are

Taking to eliminate y gives
rearranging and factorising

Therefore the tangents meet on the directrix.

SOLUTION

and

Therefore and the equation of the tangent at P is

(ii) Using mni = — 1 for perpendicular lines, the gradient of the normal is

7

and 
and



EXAMPLE 7.7 Prove that the equation of the tangent to the hyperbola

Figure 7.65
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7
at

P(a sec 0, b tan 9) may be written as or as

SOLUTION

Therefore and the equation of the tangent at P is

and

Multiplying throughout by cos 9 and using gives the alternative

form

EXAMPLE 7.8 Lines are drawn parallel to the asymptotes through any point P of the hyperbola

meeting the asymptotes at H and K.

Prove that PH x PK

SOLUTION

By symmetry there is no loss of generality in taking P to be (a sec 9, b tan 9) in
the first quadrant as in figure 7.65. Let PH = /z, PK = fc, and let the angle
between the asymptote and the x axis be (p.



Figure 7.66

1 The graph of y2 + |x2 — 9| = 16 is shown below.

(i) Find the co-ordinates of the x and y intercepts and the points A, B, C
andD.

(i i) Prove that arcs AB and CD lie on a rectangular hyperbola and write
down its equation.

The graph of y2 + a\x2 — 9\ = 16 is shown below for several values of a.

( i i i ) Show that in general for a > 0 (a ̂  1) two arcs lie on a hyperbola and
two arcs lie on an ellipse. Write down the equations of these conies in
terms of a.

(iv) Show that, when a = j, these conies meet at right angles to each other
at all four points.
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7
Then

and

So

But since

(see figure 7.66).

Therefore

and so

EXERCISE 7D



(v) Find the exact value of a which results in the graph shown below.
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2 A parabola has parametric equations

(i) Find the equation of the tangent to the parabola at the point P(ap , 2ap).

The tangents to the parabola at the points P(ap2, 2ap) and Q(a^2, 2aq),

where p ^ q, meet at the point T.

(ii) Show that the co-ordinates of T are (apq, a(p + q)).

The mid-point of PQ is M, and the mid-point of TM is R.

( i i i ) Show that TM is parallel to the x axis.
(iv) Show that R lies on the parabola.
(v) Show that the tangent to the parabola at R is parallel to PQ.

[MEI]

3 The parametric equations of a parabola are x = at2, y = 2at. P and Q are
two points on this parabola with parameters t\ and t2 respectively.

(i) (a) Derive the equation of the chord PQ.
(b) P and Q now vary in such a way that line PQ has a fixed gradient.

Show that ti + t2 is constant.
(c) Write down the co-ordinates of the mid-point of PQ.

Show that the mid-points of chords of a parabola which are in a
fixed direction, lie on a line parallel to the x axis.

(ii) (a) Find the equation of the tangent to the parabola at R(aT , 2aT).
(b) Show that this tangent will also be a tangent to the circle

(c) Find the equations of the two real common tangents to the circle

and the parabola.
[MEI]

4 The focus of the parabola y1 = 4ax is the point with co-ordinates (a, 0).
Any chord of the parabola which passes through the focus is called a focal

chord. The directrix of the parabola is the line x = — a.

For the parabola y2 = 4ax, prove that a circle which has a focal chord as
diameter touches the directrix.



5 The elliptic trammel is a mechanical device for drawing ellipses.
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7

It consists of a straight rod with a pencil at P and pegs at X, Y which run in
perpendicular grooves OX, OY. Prove that if OX, OY are taken as x and y

axes with PX = fc, PY = a, then the locus of P is the ellipse

[Hint: Use the angle 9 shown in the diagram.]

6 (i) Show that the x co-ordinates of the points of intersection of the line

y = mx + c and the ellipse (where a > b > 0) satisfy the

quadratic equation (a2m2 + b2)x2 + (2a2mc)x + a2(c2 — b2) = 0.
(i i) Deduce that if y = mx + c is a tangent to the ellipse, then

 and show that the point of contact is

( i i i ) Use the result in part (ii) to prove that the gradients of the two tangents
from the point (X, Y) to the ellipse are the roots of the quadratic
equation

(iv) Find the condition for this equation to have complex roots, and
interpret this geometrically.

(v) Find the condition for the product of the roots to equal — 1. Deduce
that the tangents from the point (X, Y) to the ellipse are perpendicular
if and only if (X, Y) lies on the circle x2 + y2 = a2 + b2. (This is called
the director circle of the ellipse.)

(vi) An elliptical disc slides between two fixed perpendicular lines. Prove
that the locus of its centre is an arc of a circle.

7 The line y = mx + c meets the hyperbola at P!, P2 and meets
the asymptotes at Qi, Q2.

(i) Write down the quadratic equation whose roots are the x co-ordinates
of P!, P2, and find the sum of these roots.

(i i) Write down the quadratic equation whose roots are the x co-ordinates
of Qi, Q2, and find the sum of these roots.

( i i i ) Hence show that P l5 P2 and Q1? Q2 have the same mid-point.
(iv) Deduce that P^ = P2Q2.
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7
8 The tangent at a point P of the hyperbola meets the asymptotes

at Q!, Q2.

(i) Prove that P is the mid-point of QiQ2. [Hint: Use Question 7 part (iv).]
(ii) Prove that as P varies the area of triangle OChCh remains constant.

9 Prove that the equation of the normal to the hyperbola at

P(asec0, btanO) is axsinO + by = (a2 + b2)tan0.

This normal meets the x axis at G, and the mid-point of PG is Q. Prove that

the locus of Q is a hyperbola.

10 Find the co-ordinates of the two points where the hyperbolas 

and xy = 6 intersect. Prove that the tangents to the hyperbolas at these
points form a rectangle.

11 Sketch on a single diagram three members of each of the following families

of rectangular hyperbolas:

(A) those with equations x — y = a for various a

(B) those with equations xy = c for various c.

Prove that every member of family (A) meets every member of family (B) at

right angles, unless a = c = 0.

12 Find the equation of the normal to the rectangular hyperbola xy = c at the

point P Prove that this normal meets the hyperbola again at

The circle with PQ as diameter meets the rectangular hyperbola xy = c2

again at N. Prove that PN passes through the origin, and that the normal at
N is parallel to PQ.

13 The mid-point of the chord joining the points and on

the rectangular hyperbola xy = c has co-ordinates (X, Y)

Prove that t + T and

A variable chord of the rectangular hyperbola xy = c2 passes through the

fixed point (/z, k). Prove that the locus of the mid-point of the chord is
another rectangular hyperbola, and give the equations of its asymptotes.



14 A curve, C, has parametric equations x = sin T, y = cos T.

(i) Describe C.

C is transformed into a family of curves by the matrix

different values of k. The general member of this family is denoted by K.

(i i) Enter several members of the family onto your calculator using various

values of k (but not 1, —1 or 0).
Name the conic they look like and state the equations of the lines that
appear to be their axes.

The matrix M is

( i i i ) State the transformation represented by M.
(iv) Apply the matrix M to the general curve K to obtain the curve E.

Find the cartesian equation of E and hence confirm your observations in

part (ii).
(v) Explain why values of 1, —1 and 0 for k are special cases. Use your

calculator to investigate what happens in each of these cases and explain
your findings.

15 The diagram below shows the circle S, x2 + y2 = a2, and the ellipse S',

 The point P(a cos 9, a sin 9) lies on S.

(i) Prove that P' lies on Sf and, on a copy of the diagram, show the position

ofP'.

A second point on the ellipse has co-ordinates (acos T, bsin T)

(i i) Explain the geometrical significance of T.
( i i i ) Write down detM and explain how this shows that the area of the ellipse

is nab.
199

P' is the image of P under the transformation given by the matrix

7

for



16 The diagram below shows the lemniscate r2 = cos 20 and the circle r = 1.

(i) On an accurate copy of the diagram, draw the lemniscate and six such

pairs of points P and P' in the first quadrant.
(ii) Prove that as P moves along the lemniscate, P7 traces out a rectangular

hyperbola.
State the cartesian equation of the hyperbola (where the origin is at the
pole and the x axis is the initial line).

Applying the same process to points on the curve r2 = sin 20 also results in
a rectangular hyperbola.

( i i i ) Draw the curve r2 = sin 29 and the resulting hyperbola on your
calculator.

State the cartesian equation of the hyperbola in this case.

INVESTIGATION

Sinusoidal spirals are curves with polar equation rp = cospO. Figure 7.67 shows
some pairs of sinusoidal spirals for different values of p.
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A half-line, L, is drawn from the pole, O, as shown. L meets the lemniscate

at the point P. The point P' on L is chosen so that

Figure 7.67

Investigate other pairs of sinusoidal spirals.

Do they always touch rather than cross?



A rectangle ABCD slides down a wall so that A remains in contact with the

wall and D remains in contact with the ground. M is the centre of the
rectangle ABCD and D is initially at O. BC is of length p and AB is of length q.

The angle that AD makes with the ground at any time is given by T.

(i) Taking OD as the x axis and OA as the y axis, find the parametric

equations of the locus of M.

For the remainder of this question, let p = 8 and q = 6.

(i i) Using your graphic calculator, plot the path of M. Sketch this path,

stating the range of values of the parameter T.

( i i i ) By symmetry considerations, or otherwise, state the value of T when the
distance |OM| is a maximum and find this maximum distance.

Now assume that, rather than sliding down a wall, the rectangle moves in
such a way that A remains in contact with the y axis, as shown, and D

remains in contact with the x axis.

(iv) Explain how the locus of M differs from part ( i i) above.
(v) Sketch the locus of M in this case. What type of curve might this be?
(vi) Express sin T and cos T in terms of x and y and hence show that the

cartesian equation for the locus of M is 25(x2 + y2) — 48xy = 49.

(vii) By using the substitutions x = and y = show that this

reduces to the ellipse

Explain carefully what this tells you about the locus of M.
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The ancient Greek mathematicians attempted to solve any geometrical
construction problem using just straight edge and compasses. However,

there were three problems that they found they could not solve by these
means: how to construct a circle with the same area as a given square, how
to double the volume of a given cube, and how to trisect a given angle. In

the nineteenth century, it was finally shown that these constructions are
impossible using just straight edge and compasses. However, the Greeks did
devise other ways of solving them, using unusual curves like the one
described below.

OABC is a square of side 1 unit.
When t = 0 the line L lies along OA and the line M lies along AB.
The line L rotates clockwise about O at 1 radian per second and,
simultaneously, the line M drops towards OC at a constant rate, so that L
and M reach OC at exactly the same time.

Point D, the intersection point of L and M, traces out a curve called the
trisectrix.

(i) If t is the time that has elapsed, in seconds, find the cartesian co-ordinates
ofD

(a) in terms of t (b) in terms of 9.

(ii) Taking the x axis as the initial line and O as the pole, what is the polar
equation of the trisectrix?

( i i i ) Plot the trisectrix on your calculator and sketch your result.

(iv) Using the trace function, find the co-ordinates of D when it meets the
x axis.

Why do your answers to (i) and (ii) not give you this information?

Suppose now that a vertical line is dropped from
D, cutting OC at E. Then the point F is constructed
so that EF = JED. Finally the horizontal line FG

is constructed with G on the trisectrix.

(v) Show that ZGOC is exactly a third of ZDOC.
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3 (i) The point P with co-ordinates is on the rectangular hyperbola

7xy = 1. Prove that the equation of the tangent at P is x + yt = 2t
(i i) The point Q is the intersection of this tangent with the line through the

origin O perpendicular to this tangent. Show that the x co-ordinate of

and find the y co-ordinate of Q in terms of t. The locus of

Q as t varies through all non-zero values is called a lemniscate.
( i i i ) (a) With the aid of your calculator draw a diagram showing the

rectangular hyperbola and the lemniscate.

(b) By replacing t by — in the parametric equations, prove that the line

y = x is an axis of symmetry of the lemniscate.
(c) Prove that the line y = — x is also an axis of symmetry of the

lemniscate.
(iv) The line OQ is extended beyond Q to meet the hyperbola at R.

Prove that OQ x OR = 2.

4 You are given that the foci of the conic with equation where

(i) Prove that all the conies with equations

where A is a parameter, have the same foci, and state
the co-ordinates of these foci.

(i i) State the ranges of values of/I for which this conic is
(a) an ellipse (b) a hyperbola.
With the aid of your calculator sketch on a single diagram the conies
obtained when A takes the values 1, —2, —4. Label each conic with its
value of /I. Show also the common foci of these conies.

( i i i ) Find the two values of/I for which the conic passes
through the point

(iv) Prove that the tangents at P to the two conies found in part ( i i i ) are
perpendicular.

Qis

p > 0 and p > q, are the two points



5 The diagram shows a circle of radius 1 with centre C, a diameter OCA, the
tangent at A and the radius CB which is perpendicular to OCA.

(i) Taking O as the pole and OA as the initial
line of polar co-ordinates, write down the
polar equations of this circle and this tangent.

Enter this circle and tangent into your
calculator, setting the scales so that the shape
of the circle is displayed correctly.

A straight line through O meets the circle again at

Q and meets the tangent at R. The point P on this
line is such that |OP| = |QR|. The locus of P as the
line varies is a curve called the cissoid of Diodes.

(ii) Taking angle AOP = 0, prove that the polar
equation of this cissoid can be written in the form r =

( i i i ) Prove that B lies on the cissoid.
(iv) Enter the cissoid into your calculator.

On a copy of the diagram shown, draw the cissoid.
Describe briefly the main features of the cissoid.
(a) The straight line AP produced meets CB produced at the point U,

and the straight line OP meets CB produced at V. Add AP, U and V
to your diagram.

Let ZAOV = 9. By using cartesian co-ordinates, or otherwise, prove

(v)

(b)

that the length of CV is the cube root of the length of CU.

6 The diagram shows a circle, C, of unit radius, passing through O.

(i) Taking O as the pole and the horizontal axis to be the initial line, show
that the curve C has polar equation r = 2 cos 9 and enter this curve
onto your calculator.

The line through O making angle 9 with the initial line cuts C again at Q.
P and P7 are the points on OQ (extended, with P beyond Q) which are k

units from Q, where k > 0. As 9 varies, the set of points P and P7 form a
curve called a Uma$on.
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(i i) Prove that the polar equation of this limacon is r = 2 cos 9 + fc,

explaining how this gives both the points P and P7.
( i i i ) With the aid of your calculator draw on separate diagrams

(a) the circle C and the limacon for which k = 1
(b) the circle C and the limacon for which k = 3.

What is the key difference between these two lima^ons?
(iv) Describe in general terms the shape and position of the limacon when

(a) k is very close to zero
(b) k is very large.

(v) In the case k = 2, prove that

(a) the circle Cf with diameter PP7 touches the circle C at the point Q7,
where QQ7 is a diameter of C

(b) the arc length P7Q7 on C7 equals the arc length OQ7 on C.

7 (i) A curve, C, has parametric equations

x = 6 cos T, y = 6 sin T.

Prove that this curve is a circle.

Before proceeding with the rest of this question, you are advised to enter this

curve onto your calculator and to set the scales so that it appears as a circle.

(i i) Another curve, H, has parametric equations

x = 5 cos T + cos 5T, y = 5 sin T — sin 5T.

Enter this curve, also, onto your calculator.

Describe its main features and state its greatest and least distances from
the origin.

The curve H is a particular member of a family of curves. The general
member is defined by the parametric equations

x = k cos T + cos kT, y = k sin T — sin kT

for positive integer values of k.

( i i i ) Predict, in terms of fc, the features of the general member of the family
of curves.

(iv) Show that the distance, r, of the point (xy y) from the origin is given by

r2 = Jc2+2fccos(fc+l)T+l.

Use this result to justify the predictions you made in part ( i i i) .

The curves in this family are called hypocycloids. A hypocycloid is the locus
of a point on the circumference of a circle as it rolls round the inside of a
circle of larger radius.

(v) In this case, the radius of the smaller circle is 1 unit. Write down the
radius of the larger circle.

7
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8 (i) Copy and complete this table of values for 

206

(ii) Sketch the curve
( i i i ) Without using your calculator, use your answer to part (ii) to draw a

sketch of what you think the curve
(iv) Now use your calculator to check your answer to part ( i i i) .

will look like.

A family of curves has the form
of a.

for different values

(v) Draw diagrams to illustrate typical members of the family, including any
special cases, stating the appropriate value or range of values for a.

(vi) Is it possible to find values of a for which the curve has
(a) cusps (b) nodes?

9 The diagram below shows a circle with radius a and centre C. O is the pole
and C is on the initial line at a distance a\/2 from O.

A straight line through O meets the circle at points Q and Q7. P and P' are
chosen so that |OP| = |OP'| = |QQ'|. Repeating this for other points Q and
connecting all the points P and all the points P' gives a curve called the
lemniscate of Bernoulli.

Let |OQ| = rand |OQ'| = r.

(i) Use the cosine rule in triangle OQC to find an equation linking a and r.
(ii) Show that |QQ' = r — r = 2avcos20 and hence write down the polar

equation of the lemniscate.
Draw this curve on your graphic calculator, setting a = 1.

( i i i ) Show that the cartesian equation of the lemniscate is

(iv) Show that the area of the smallest rectangle containing the lemniscate,
with sides parallel and perpendicular to the initial line, is 4\/2a2.

7

for i



10 The diagram shows a point T on the initial line at a distance d from the pole
S. The point P moves in such a way that |PS| = fc|PT|.

(i) Describe the path traced out by P when k = 1.
(i i) For the case k = ^ use the cosine rule to show that the polar equation of

the path traced out by P is given by

( i i i ) Explain why, in the context of the locus problem described, P will cross

the initial line at the point D, a distance     from S. Substitute 0 = 0 and

0 = 7i in the expression given for r in part ( i i) and comment on the

values of r.
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On your graphic calculator plot for

various values of d. You should find that the path is a circle.

In the general case |PS| = fc|PT|, the locus of P has polar equation

(iv) Show that, for k = ^ this agrees with the formula in part (ii).
(v) Describe the similarity between the case k = 2 and the original problem

with 

(vi) What potential problems are there for substituting values of k > 1 in

11 A curve S is given parametrically by

(i) Using your graphic calculator, sketch the curve and state which conic it

looks like.

The distance of a point (x, y) on the curve from the origin is denoted by r.

(i i) Show that r2 = 2 + 6 sin2 T.

( i i i ) Differentiate this expression for r2 with respect to T.
(iv) Hence find the co-ordinates of the two points on S nearest to the origin

and those of the two points furthest from the origin.
(v) Show that your answers to part (iv) are compatible with the curve S

being an ellipse.



Each point on the curve S is rotated by the matrix R = to

(i) Show that the polar equation of the limacon is r = 2acos 9 + k.
State which values of 9 give the locus of P and explain why the
remaining values of 9 give the locus of P7.

(ii) On your calculator draw the limacon with equation r = 4 cos 0 + 2. On
a copy of this diagram draw the circle which gave rise to this limacon
and, on the limacon, mark the points generated when Q is at the pole.

The limacon below has a cusp at the pole.

( i i i ) What is the relationship between a and k for this limacon?

(iv) Find the values of 9 satisfying      (r sin 9) = 0 in this case.

Explain carefully the geometrical significance of each of these values.

208
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give the curve S .

(vi) Write down the angle of rotation represented by R, and the direction of
the rotation.

(vii) Find the image on S' of the point (cos T + 2 sin T, cos T — 2 sin T) on S
under this rotation.
Hence find the cartesian equation for S' and verify that it is an ellipse.
What does this tell you about the curve S? Justify your answer.

12 The lima$on of Pascal is the locus of P in the following construction.

The circle S has polar equation r = 2a cos 9 and Q is a variable point on S.
The line L passes through the pole, A, and Q. Points P and P' on L satisfy
|QP| = |QP'| = ky where k is a constant.



13 The point C has co-ordinates (0, a). D moves along the line y = a and L is
the variable line through O and D. The point P lies on L such that
| OP | = |CD|. The locus of P is a curve known as the Kappa curve.

(i) Make a rough sketch of the curve, identifying any symmetry and

asymptotes.
(i i) Show that the polar equation of the Kappa curve is r = a cot 9 and find

the equivalent cartesian equation.

( i i i ) Plot the Kappa curve on your calculator and explain any differences
from your sketch in part (i).

14 In the diagram below, O is the origin, R is the point with co-ordinates (0, 2a)

and S is the circle with OR as diameter.

The point A moves along the line y = 2a and L is the variable line through

O and A. The line L meets the circle S at the point Q. QP is parallel to the
x axis and PA is parallel to the y axis. The curve traced out by P is known as
the witch ofAgnesi.

(i) Show that |OQ| = 2acos T and use this to find the co-ordinates of Q in

terms of T.
(i i) Show that |RA| = 2atan T and use this, and your answer to part (i), to

show that the co-ordinates of P are (2atan T, 2acos2 T).
( i i i ) Sketch the curve using the parametric equations x = 2atan T,

y = 2acos2 T, setting a = 1.
(iv) By eliminating T from the parametric equations, find the cartesian

equation of the curve.
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(v) Show that when and explain the significance of

this result.



15 In the diagram below, A is the pole and D is a line perpendicular to the
initial line at a distance b from A. Q is a variable point on D.

The line L passes through A and Q. Points P and P' are drawn on L so that
|QP| = |QP'| = a, where a is a constant. The locus of P, as Q moves along

D, is a curve called the conchoid ofNicomedes.

(i) Make a rough sketch of the locus of P and P7 for the case a < b. Show
the line D and state the intercepts with the initial line.

(ii) Write down the polar co-ordinates of Q.
( i i i ) Using your answer to part (ii) show that the polar equation of the curve

is r = b sec 9 + a. State which values of 9 give the locus of P and explain
why the remaining values of 9 give the locus of P7.
Investigate the shapes of the conchoids for various values of a and b,

including the case a > b.

The diagram below shows one such conchoid which has a cusp.

(iv) Write down the relationship between a and b for the conchoid to ha
cusp.

(v) By considering (ar cos 9) , or otherwise, find the cartesian equation of
the conchoid.
Use this to find the values of x corresponding to y = 0 and explain the
significance of this in terms of loops and cusps.

(vi) In the special case a = 2b\/2 work out the cartesian co-ordinates of the

points where       = 0, i.e. where the tangent to the curve is horizontal.
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16 The diagram below shows a fixed circle S with centre C and radius a. 1̂  is
the fixed line x = ka and F! is the point where this line meets the x axis. PI

is a variable point on L!. P2 lies on S and PiP2 is parallel to the x axis.

L2 is the line parallel to L! passing through P2. F2 is the point where L2

meets the x axis. The point P is where the line OPi produced meets L2.

The locus of P is a curve called the piriform (or pear-shaped quartic).

(i) Let T = ZCP2F2. Show that
(a) P! has co-ordinates (fca, a cos T)

(b) P2 has co-ordinates (a + a sin T, a cos T).
(i i) Using the expressions in (i), and the gradient of line 0?!, or otherwise,

show that the parametric equations of the piriform are
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( i i i ) Draw this curve on your calculator with a = 1 and k = 0.5, along with

the circle and the line Lj. On a copy of this graph indicate clearly how

the piriform unfolds as T varies.

(iv) Find the range of values of

in terms of a and k. How does the position of the line L! affect the value
of T which corresponds to the maximum value of y?



KEY POINTS

1 The equations of many curves can be expressed in cartesian, parametric and

polar form.

2 The substitutions x = r cos 9, y = r sin 9 are useful when converting

between these forms.

3 The important features of curves to recognise are

• symmetry and periodicity

• vertical, horizontal and oblique asymptotes

• cusps, loops and dimples

• nodes (or crossover points).

4 For curves given in cartesian and parametric form, calculus techniques are

used to find

• the equations of tangents and normals

• the maximum and minimum values of x and y

• the maximum and minimum distances of a curve from the origin.

5 For curves given in polar form, calculus techniques are used to find

• the maximum and minimum distances of the curve from the pole

• the points on the curve where the tangent is parallel, or perpendicular,

to the initial line.

6 The standard cartesian and parametric equations of the conies are given in

the table below.
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Parabola

Ellipse

Hyperbola

Rectangular hyperbola

Cartesian Parametric



Glossary of curves

Details and properties of many other curves can be found at
http://www-groups.dcs.st-and.ac.uk/history/Curves/Curves.html.

Rectangular Hyperbola
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Circle

Cycloid

Ellipse

Hyperbola

Epicycloid

Curtate cycloid

Parabola

Prolate cycloid

http://www-groups.dcs.st-and.ac.uk/history/Curves/Curves.html


Hypocycloid Right strophoid

Cardioid Cissoid of Diocles

Nephroid

Limagon

Conchoid of Nicomedes Trisectrix of Maclaurin

Astroid Lissajous curves
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The folium of Descartes

Piriform
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Spiral Trident

Lemniscate

Kappa curve

Maltese cross

Eight curve

Witch of Agnesi
Deltoid



Activity 1.2 (Page 4)

Exercise 1A (Page 5)

216

This is possible because A, B and C are

arbitrary constants - functions that look very

different all can be correct expressions of the

same indefinite integral. Ignoring the constant

of integration can cause problems.

7 The constant of integration has been ignored.

Activity 1.4 (Page 8)

(i) The gradient is always negative.

For (ii) and ( i i i ) the argument is similar.

Answers

Chapter 1

Activity 1.1 (Page 3)

Activity 1.6 (Page 9)

Activity 1.5 (Page 9)

The graphs in figure 1.8 are obtained by reflecting t

graphs in figure 1.7 in y = x.

The gradient is always positive, tending to 0 as

x —> ± oo. Maximum gradient = 1, when x = 0.

Since is negative (from

Activity 1.3 (Page 4)



Exercise 1B (Page 10) 

11

217

Domain

Range
Domain

Range

arcsine arccosine arctangent

arcsecant arccosecant arccotangent

Exercise 1C (Page 14)

? (Page 15)

No real roots

? (Page 16)

So that Ax + Bx + C can be rearranged as

Exercise 1D (Page 17)

3 arccos x + arccos (—x) = n

work with -

provided

If

all real 

numbers

all real

numbers

1



(iv) n repeated petals when n is odd, 2n petals
when n is even

Chapter 2

Activity 2.1 (Page 21)

Exercise 2A (Page 22)

1 Kite

and

or
218

3 (i) Circle

Exercise 2B (Page 26)

? (Page 25)

This uses x = r cos 9, y = r sin 0, with r = f(9)

4

3 (ii) A(5.39, 0.38), B(8.71, 1.01),
C(8.71, 1.64), D(5.39, 2.27)

( i i i) B(4.64, 7.37), C(-0.58, 8.69), D(-3.45, 4.14)

(ii) Area of sector + area of triangle

and

and

and

or

or

(I) 4



12 (i)

219

5 x = a, y = b
6 x cos a + y sin a = p

? (Page 28)

In all cases is between and so the

limiting argument holds as before.

Activity 2.3 (Page 29)

Exercise 2C (Page 29)

1 It gives twice the area.

cartesianPolar
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Exercise 3B (Page 37)Chapter 3
Activity 3.1 (Page 33)

Activity 3.2 (Page 34)

Exercise 3A (Page 35)

1 1,0
2 2,71

11 0.25,2.3
12 3, 7i-3 ^0.142
13 5, -0.927
14 13,2.747
15 8.062, 1.052
16 109.604, -2.128

(iv) L is the circle centre radius



Activity 3.4 (Page 38)

(i) Rotation of vector z through H

(ii) Half turn of vector z

(= 2 successive     rotations: —1 = j x j)

Exercise 3C (Page 38)

221

10 Exceptions

(i) if z = 0 then     does not exist

( i i i) if z is real and negative then arg argz

11 (i) Enlarge from O x3
(ii) Enlarge from O x2 and rotate

( i i i) Complete the parallelogram 3z, 0, 2jz
(iv) Reflect in the real axis
(v) Find where the circle with centre O through z

meets the positive real axis
(vi) Complete the similar triangles 0, 1, z and 0, z, z2

12 (a) All move in straight lines
(i) from — 3j to 3j
(ii) from 2 to —2
( i i i) from 2 - 3j to -2 + 3j
(iv) from j to —j
(v) from 1 to 0 then back to 1
(vi) from — 1 to 0 then back to — 1

(b) All except (v) move round circles
(i) once anticlockwise round z| = 3, starting

at 3
(ii) once anticlockwise round z| = 2, starting

at2j
( i i i) once anticlockwise round z| = ^/I3y

starting at 3 + 2j
(iv) once clockwise round |z = 1, starting at 1
(v) stationary at 1
(vi) twice anticlockwise round |z = 1, starting

at 1

(iv) perpendicular bisector of line from a to ft

1371
(v)

24
16 (i) Points of knife have moduli < 1, which

decrease on squaring; angle subtended by knife
at the origin is doubled

(ii) points of forearm have argument     (vertical

from O) which doubles to become n
(horizontal from O) on squaring

( i i i) angles subtended by head and boots at O both
double, but boots are further from O than
head, so grow more
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(iv) knife tip has argument stomach has

argument both give argument on

doubling.

Exercise 3D (Page 41)

Activity 3.6 (Page 43)

Activity 3.7 (Page 43)

Exercise 3E (Page 44)

Activity 3.8 (Page 46)

Exercise 3F (Page 48)

4 Allz

6 Rhombus

where the dot shows differentiation with respect to t.

ComDonents:

velocity

acceleration

radial transverse

Activity 3.9 (Page 49)

Exercise 3G (Page 50)

where

where



Activity 3.10 (Page 51)

223

Square roots have modulus and

arguments

is ambiguous, meaning j at one stage and —j at
another.

Exercise 31 (Page 57)

Activity 3.11 (Page 52)

Therefore

Activity 3.12 (Page 53)

The degree of the equation is now n — 1, since the (jz)"
and (—}z)n terms now cancel. The working is the same,

except that a + 1 = 0 is now possible, when k = —. So

the n - 1 roots are z = tan-^-, k = 0, 1, 2, . . . , n - 1,

Exercise 3H (Page 53)

1 The fifth roots give alternate tenth roots, and their

negatives (given by half turn about O) fill the gaps.

3 —a, ±aco, ±aco2

5 (iv) If and only if m and n have no common factor

Activity 3.13 (Page 56)

1.22 + 0.19J

? (Page 56)

(excluding if n is a multiple of 4)



Activity 3.14 (Page 60)

224

7 Regular n-gon with one vertex at O

( i i i) Rotate (centre O) through and enlarge

Activity 3.15 (Page 61)

(ii) Both

by using result (i).

, which simplifies to

Let the side An_^An be represented by the
complex number wn (n = 1, 2, . . . , 6).
Then \wn\ = I (unit sides)
and

Each external angle of the heptagon is -

So and

(by vector addition round the heptagon from O).

arg follows from ( i i i ) with

16 He was essentially right, in the sense that by
replacing \^—l by j and oo by n, and then letting
n —> oo gives the limit TI.

, where



Activity 3.16 (Page 62)

The argument is as in Example 3.12, with the extra step
of taking the conjugate which reflects triangle DEF to
produce opposite similarity.

Exercise 3J (Page 64)

6 ae* + fc/* + c^^ = of* + frd* + ce*

8 (i) Vector coz is vector z turned through

(ii) 3 - 2^3 + (5 + V3)j, 3 + 2^3 + (5 - >/3)j
13 (ii) Result is still true.

( i i i) Let D coincide with A. Then S also coincides
with A.

225

Circle centre radius

4 Converse is not true.



Activity 4.2 (Page 71)

2.708

Exercise 4A (Page 72)

226

Activity 4.3 (Page 75)

if f(x)= cos 3: then ff(x) = — sinx, f"(x) = — cosx,
f(3) (x) == sin x and f ^ (x) = cos x. The pattern then
repeats in a cycle of four. So r2r'(0) = (—l)r and

The result follows.

Activity 4.4 (Page 75)

Iff                     hen

and
for 1 ̂  r ^ n. The result follows.

Activity 4.5 (Page 78)

The constant of integration is zero because
In (1 + x) = 0 when x = 0.

(ii) The terms neglected in the series for e* and (1 + x)~
do not affect the product up to terms in x3.

Chapter 4

Activity 4.1 (Page 71)

close to 1 when x is

small.

2 Row 3 contains x times the reciprocals of factorials,
and cell A5 contains the sum of these.

3 0.6065

Exercise 4B (Page 76)

1 (i) In x and its derivatives do not exist at x = 0.

The result follows.

-gives In2 « 0.6930

(ii) Same as (i) (c).

If then

and



Exercise 5A (Page 87)

Also the side of the square

Chapter 5
Activity 5.1 (Page 86)

The six products in Sarrus' method are the six terms in
the expansions of detM by the first column (for
instance) with their correct signs; 13.

Activity 5.2 (Page 90)

(b) A shear parallel to the z axis, each point
moving q times its x co-ordinate.

(ii) (c) P is mapped to P; by three successive shears;
shears preserve volume.

Exercise 5B (Page 91)

1 (i) Columns 1 and 3 are identical.
(ii) Columns 2 and 3 have been swapped.
( i i i) The columns have been cyclically interchanged.
(iv) Substituting 3 for x makes columns 1 and 3

identical
=3* determinant = 0
=> (x — 3) is a factor of the determinant (by
the remainder theorem).

2 (ii) Stretching by scale factor k in one direction
only multiplies volume by k.

( i i i) Multiplying any one column by constant k
multiplies determinant by k. 227

Activity 4.6 (Page 79)

If x = a is an approximation to the root of f(x) = 0
and the root is x = a + h then f(a+h) = 0. But
f(a + h) w f(a) + /zf'(a), so f(a) + /zf'(a) w 0, so

This gives the Newton-Raphson approximation

for the root.

Exercise 4C (Page 80)
Interchanging the rows and columns has not
changed the determinant.

3 (i) 0

(ii) 0

With repeated columns, the value of each
determinant is 0.

4 (i) (a) 2

(b) -2

(ii) (a) 13

(b) -13
In both cases, swapping two columns has
multiplied the determinant by — 1.

5 2, 3, 6; det(MN) = detM x detN

agrees witn (0 as

the x4 term of the product is not
correct.

8 Given 0 < r < 1, the area of the square

1 (i) 30
(ii) 33

(iii) -15

(iv -2
2 (i) (a)

(a)

(a) 5

5

5

-5(b)

(ii///)

far as the term in x4



But (adjM) 

The result follows.
These results are identities (or sets of identities)
between the elements of M, which are true for all
values of these elements, even when M is singular.

Exercise 5D (Page 102)

1 A pair of lines intersecting at (6-j, —j)

4 (ii) A shear does not change volume.

(ii) No. (Yes if restricted to matrices whose
determinant is not 0.)

9 Equation of the straight line joining (x\, y\], (x2, y^,
10 Expanding the determinant gives a cubic

polynomial; 5, —8
12 (i) (a - b)(b - c)(c - a)

(ii) (y - z](z - x)(x - y)
(Mi) (yrepeats in a cycle of  four.  So r2r'(0) = (—l)r and-
(iv) (y - z)(z - x)(x - y)(xy + yz + zx)

13 x(x+l)(x- I)3

Activity 5.3 (Page 93)

Of the nine elements, six are 0 as they are expansions
by alien cofactors; the other three are A as they are
expansions by each column in turn.

Activity 5.4 (Page 94)

Activity 5.5 (Page 94)

If M has inverse M"1 then detCMM"1) = detl = 1.
But detCMM"1) = detM x det(M"1) = 0, since
detM = 0.
Therefore M has no inverse.

Exercise 5C (Page 96)

228

10 (i) See text, page 94.
(ii) Take determinants in part (i).

provided

 from part (i).



2 Inconsistent: distinct parallel lines in two

dimensions

3 Coincident lines with infinitely many common

points (ty 4 — 2?)

4 Inconsistent: distinct parallel lines in two

dimensions

5 Inconsistent: planes forming a prism

6 A sheaf of planes with common line

(2/1 + 1, 4/1 + 1, -3/1 + 5)
7 Three planes with a unique common point

(3,-14,8)

8 Three planes with a unique common point

(-15,24,-!)

9 Three coincident planes (A, ^ 2A + ^ — 5)

10 Inconsistent: planes forming a prism
11 /c = 4, (-|, —2A, A); k = —4, no solution

12 The transformation either (a) collapses the whole

plane to a line through O or (b) maps everything

toO.

When p = q = 0 in (a) there is a line of points that

map to O, and in (b) every point maps to O.

When p and q are not both 0, there is either no

solution (distinct parallel lines) or many solutions

(coincident lines).

13 (i) Inconsistent: planes form a prism

(ii) (A — 2, A, 2A): planes form a sheaf

14 It makes no difference whether A is singular or

non-singular.

15 14

16 (ii) (a) No solution: prism of planes

(b) x=t,y = 3t-4,z = 2t-2; sheaf

Activity 5.7 (Page 105)

( i i i) -729
8 (i) (a) 2, 3

(b) 4, 9
(c) 32, 243

(ii) (a) 1 , 2 , 3
(b) 1, 4, 9
(c) 1, 32, 243

9 (i) M"v converges to 0

(ii) If A! = 1, M"v converges to s^ if ^ = — 1,

M"v eventually alternates between ± Si 229

Exercise 5E (Page 110)

(i) det
Putting gives detM

(ii) Coefficient of A on RHS of

When expanding detfM — AD the terms in arise

only from the product of the elements on the

leading diagonal, since all

other terms are linear in The coefficient of. is

^1 + ^2 + ^3, and the result follows.

where

where

where

where

where

where

where

where

2 (repeated),

and p and a are not both 0where

where

where

- no real eigenvalues;

eigenvalues are and all

non-zero vectors are eigenvectors

where

Actiovity 5.9 (page 110)



The characteristic equation is A — 8A + 9 = 0.
By the Cayley-Hamilton theorem:
M2 - 8M + 91 = 0 => M2 = 8M - 91.

Multiplying by M" gives the result.

O (Page 116)

No. The suggested substitution is invalid since A is a
number and M is a matrix.

Exercise 5F (Page 117)

1 Note: the columns of S may be reversed provided
the eigenvalues are also reversed. Each column
of S may (independently) be multiplied by a
non-zero constant.
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( i i i) The magnitude of M"v increases without limit;
the direction of M"v becomes parallel to Si.

so 76 at Calgary, 124 at Vancouver

(iv) 75 at Calgary, 125 at Vancouver

13 (i) Under M the image of a vector is attracted
towards the eigenvector with the numerically
largest eigenvalue; each multiplication by M
maps the image closer to a multiple of that
eigenvector. This does not happen if

v0 = /3s2 + ys3, where s2, s3 are eigenvectors
with other (numerically smaller) eigenvalues;
rounding errors may also cause failures.

limit is an eigenvalue, generally /c, the largest
eigenvalue (numerically).

Activity 5.10 (Page 116)

approximates to

or

with

limitas This



2 sinh 3 M = 3 sinh w + 4 sinh3 w,

cosh 3 M = 4 cosh3 w — 3 cosh w

3 (i) (a) -In 3

(b) In f, In 2
(c) No solution

(ii) a-\- b, a — b, c all have the same sign and

4 x = In 3, y = In 2

5 1.62m, 22.3°

7 (i) 4 cosh 4x

(ii) 2xsinh (x )

( i i i) 2 cosh x sinh x

(iv) cos x cosh x — sin x sinh x

Activity 6.4 (Page 128)
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14 (i) There are four such products, generally

distinct, but AB has at most two distinct

eigenvalues which may or may not be the

product of an eigenvalue of A and an

eigenvalue of B.

(ii) 'Proof assumes that eigenvector of A is

eigenvector of B.

Chapter 6

Activity 6.1 (Paqe 124)

cosh i :osh u\ graph symmetrical

about u = 0.

sinh i

graph has half-turn symmetry about the origin.

—sinh u;

Activity 6.2 (Page 125)

Activity 6.3 (Page 125)

(i) 2 sinh u cosh u

(ii) sinh u cosh v + cosh u sinh v

( i i i) cosh u cosh v + sinh u sinh v

Exercise 6A (Page 126)

Function

tanhx

cothx

sechx

cosech x

Domain Range Even or odd

(vi) 5e10*

(vii) 3(1 + x)2 cosh2 3x(cosh 3x + 3(l +x)sinh3x)
(viii) 1

8 j(cosh2x+I), |(cosh2x-1);

11 (cosh x — sinh x)n = cosh nx — sinh nx;

12 (ii) 12



Exercise 6B (Page 128) Activity 6.5 (Page 131)
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Function

arcosh x

arsinh x

artanh x

Domain Range

Activity 6.6 (Page 132)

Activity 6.7 (Page 133)

(ii) Let x = au. Then dx = adu and

(i) y = arsinh x => sinh y = x => cosh

Since the gradient of y = arsinh x is always positive,

3 (i) ±|ln3

(ii) 0 , ln7
( i i i) 0, jln2

(ii) (a) tanh x < sinh x < sech x < cosh x
< cosech x < coth x

(b) tanh x < sech x < sinh x < cosech x

< cosh x < coth x
7 (i) — sech x tanh x

(ii) — cosech x coth x

(iii) —cosech x

(iv) sech x cosech x

8 (i) In (cosh x) + c
(ii) In sinhxl + c

( i i i ) 2arctan(ex) + c

(c) f(5)(0) =0, f(6)(0) = 120
(ii) 0.0157

11 (ii) 1 + 2x2 +| x4

Exercise 6C (Page 134)

ln( does not exist since



(Page 141)

(-3, 0)

O (Page 142)

O (Page 143)

The parameter does not correspond to the angle the
line OP makes with the x axis; using 9 might suggest
that it did.

Exercise 7A (Page 146)

1 (i) y2 = 4ax

233

(v) arsinh Q-x — l) + c

(vi) arcosh(2x + 1) + c
(vii) y arcosh (x + y) + c

(viii) yarcosh(x3) + c
7 (i) 0.494

(ii) 0.322

Chapter 7

O (Page 138)
Periodic curve; contains loops.

Activity 7.1 (Page 140)

2 r = I — re cos 9 => x2 + y2 = (I — ex)2
3 (i) x = 6 sin 9 cos2 0, 7 = 6 sin2 9 cos 0

5 Substituting

O 



(Page 148)

f(x) is an even function; it is symmetrical about the

y axis because f(x) = f(—x). It is periodic with period 

g(x) is an odd function; it has rotation symmetry about
the origin because g(x) = —g(—x). It is periodic with
period n.

Investigation (Page 149)
Parametric curves

(i) A(6, 0), A;(-6, 0), B(0, 2), B'(0,-2)
(ii) Symmetrical about x axis since

Symmetrical about y axis since

(iv) fo affects the size of the curve (the maximum
distance from the pole is b + 1) and determines
whether there is a loop, a cusp or a dimple.

(v) The gradient of the tangent changes sign but the
tangent does not exist when P is at the pole.
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For the polar curves given, in any direction 0 the two
curves are separated by a distance a. However they are
not, strictly speaking, parallel.

6 (i) x = rcosO = (2a tan 6 sin 6)cos 6 = 2asin2 6,
y = r sin 9 = 2a tan 9 sin2 9

7 They are all the same curve.

10 x3 +/ = 3oxy
11 Link between the parametrics is explained by the

substitution t = tan T.
12 (i) Ay = 5, Bx = 4, Cx + y = 4, D2y = 3x - 2

(ii) A r = 5 cosec 9, B r = 4 sec 9

( i i i) The cartesian equations of lines are far more
elegant. Polar equations of straight lines are
rarely used.

13 (ii) 

Therefore the curve touches

the circle.
14 (i) (ii)

(iv) The curve unfolds continuously in an anticlockwise
sense from A. The full range from 0 to 2n is
necessary.

Polar curves

.?. 

(Page 151)

?



Investigation (Page 155) 

(b)

All of the form y — x + c.

r = I + 2 cos 0

Touches circle r = 3

Loop touches circle r = I

No rotational symmetry

(ii) The circle of radius 1, centre the origin, and
the four points (±2, 0), (0, ± 2)

(iii) (a) y=-l,x = 1.5

(b) x=l> y = 2x+l
(c) x = 3, x = —3, 7 = x + 2

( i i i) In general the curve x = cos" T, y — sin" T
contains points in the first quadrant for n ̂  N
unlike x» + y~* — I which contains points in all
four quadrants. The ± sign effectively gives the
cartesian curve.

(iv) (a) n=l

(b) n = 0

(c) n = 2
(v) (a) The curve tends to a cross consisting of line

segments from (—1, 0) to (1, 0) and from
(0, -1) to (0, 1).

(b) The curve tends to a square consisting of line
segments parallel to the x and y axes, with

vertices at (1, !),(-!, !),(-!, -1) and (1,-1).
5 ( i i i ) 

O
Q)
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Activity 7.2 (Page 157)

The same curve is drawn but they start from different
points on the curve.

The statement is true.

?

This agrees with the gradient of the oblique asymptote
found in Example 7.3.

There are n — I \ cusps or loops.

Activity 7.3 (Page 162)

n determines the order of rotational symmetry; k
determines the number of cusps or dimples.

O (Page 162)
(i) D (ii) B (iii) A

Exercise 7B (Page 163)

E

? (Page 160)

(Page 161)

1 (i> <a)
 I r  =  3 ( l  +  c o s 2 0 )

fmax — 6

Rotational symmetry of order 2

Symmetrical in initial line

Loop for

Cups at

(Page 159)



(iv) Same curve, but the path is traced out in the
opposite direction and requires the smaller circle
to travel around the larger circle three times.

6 (i) (a) Symmetry in both axes: y <-» —y leaves the
equation unchanged, as does x <-» —x.
(Both substitutions together prove
rotational symmetry of order 2.)

(b) Symmetry in the x axis: y <-» —y leaves the
equation unchanged.

(c) Symmetry in line y = x: y <-» x leaves the
equation unchanged.

(ii) Symmetry in line y = x.

7 (i) M is a clockwise rotation through    radians

about the origin.
( i i i) The curve has rotational symmetry of order 4

about the origin.
8 (i) A circle centre (0, 0), radius 1

(ii) Circles centre the origin
( i i i) r2 = x2 + y2 = (k2 + 1). A circle, centre (0, 0),

radius ^/k2 + 1
(iv) The smallest possible radius occurs when

k = 0, r = 1; this is the circle C.
9 (ii) Symmetrical about the x axis since

(x(n-t),y(n-t)) = (x(t),-y(t)).
Symmetrical about the y axis since
(x(t + TI), y(t + TI)) = (-x(t), y ( t ) ) .
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(i) (a) Maximum or minimum distance of curve from
pole

(b) Points where the tangent is perpendicular to
the initial line

(c) Points where the tangent is parallel to the
initial line

(ii) (a) Points where the tangent is parallel to the y axis
(b) Points where the tangent is parallel to the x axis

Activity 7.6 (Page 177)
c= 1.14(292...)

(v) (a) Increasing a causes the curve to move
further from the origin.

(b) Increasing b increases the order of
rotational symmetry of the curve.

Investigation (Page 171)
As n —> oo the curve resembles a square.

? (Pace 172)

? (Page 173)
Maximum 3 + \/2i minimum 3 — ^/2

£
 

(Page 174)
In general, is easier to find than

Activity 7.4 (Page 174)

the four points (±0.385, ±2.553)

Activity 7.5 (Page 177)
The containing rectangle has area 2na x 2a = 4na2

i and



(ii) Substituting — x for x and substituting —y for y
shows symmetry in both axes.

From the graph                it can be seen

that                has three roots in the range

0 ^ 0 ̂  27i for any value of c.

9 (i) Both f = -1
(ii) —10 < t < — 1 moves away from origin in

fourth quadrant; — 1 < t < 0 moves towards
origin in second quadrant; t > 0 loop in
anticlockwise direction.
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Exercise 7C (Page 178)
1 (i) (a) 0 < k < 1

(b) 1 < k < 2
(0 k ̂  2

(ii) x = (k + cos 9) cos Oyy = (k + cos 9) sin 9
(i i i) They correspond to the four vertical tangents.

(iv) — = - sin 0(k + 2 cos 9) = 0 has four
d0
different roots for 0 < k < 2, but only two
roots (0 and n) for k ^ 2.

8 (i) Polar coordinates: P(2a(l + cos 0), 0)

and

or

as



10 (i) (1,0)

( i i i) 9 = 1.16556..., rsin9 = 0.72461.
(iv) 9 = 2.2467..., r cos 0 = -0.2172 ..

12 (ii) 1.2

Activity 7.7 (Page 184)

Activity 7.8 (Page 185)

Activity 7.9 (Page 186)

e = 1 gives a parabola, 0 < e < 1 an ellipse, e > 1 a
hyperbola. / affects the general dimensions of the conic
but not the type of conic.

Activity 7.10 (Page 188)

As SS; decreases, the ellipse becomes more circular.
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(Page 188)

Focus (ae, 0)

Directrix x

(Page 189)
See working for ellipse on pages 187-188.

?

*

i (Page 190)
Substituting 

(Page 191)
Hyperbola:
Rectangular hyperbola:

(Page 191)
x = a cosh ty y = b sinh t gives only the x > 0 branch
of the hyperbola.

Exercise 7D (Page 195)

(ellipse)
(hyperbola)

when

i inside the ellipse

10 (3,2), (-3,-2)

14 (i) A circle centre (0, 0), radius 1
(ii) Ellipses, with the major axis y = x and the

minor axis y = —x for k > 0 but 7^ 1. For
k < 0 but 7 ^ — 1 , the major axis is y = —x and
the minor axis y = x.

( i i i) Rotation, centre the origin through —45°.

?

L

1



equation of E is

This is the standard equation of an ellipse with

the x axis for the major axis and the y axis for

the minor axis for k > 0 but 7^ 1, and vice

versa for k < 0 but ̂  -I. The lengths of the

semi-axes are (k + 1) and (k — 1). This is a

rotation of K through —45° so K is an ellipse

with axes y = x and y = —x.

(v) Values of 1, —1 produce segments of the lines

y = x and y = — x respectively. In these cases

the parametric equations for x and y for the

members of the family are

k= 1:
x = sin T + cos T, y — cos T + sin T

=> y = x for - V2 ^ x ^ >/2
k= -I:

x = sin T — cos T, y — — sin T + cos T

=> y = -x for v/2 ^ x ^ >/2.

The value of k = 0 gives the circle C rather

than an ellipse.

In this case the parametric equations for x and

y for the member of the family are x = sin T,

y = cos T => x + y = 1.

Investigation (Page 200)
They do always touch. (See also Question 16 of

Exercise 7D.)

(vi) sin T = -

239

(iv) E has parametric equations

and so the cartesian

(ii) T is the angle between the x axis and the radius

OQ, where Q(acos T, a sin T) is on the circle.

area of ellipse

Exercise 7E (Page 201)

with range

(iv) Now the range is 0 ̂  T ̂  2n.

(v) Appears to be an ellipse.

(vii) The substitution is equivalent to a rotation of

the curve through    about the origin in a

clockwise direction. The line y = x becomes the

x axis and the line y = —x becomes the y axis.

The inclusion of ^/2 ensures that there is no

enlargement. Hence the locus of M is an ellipse.

detm



5 (i) Circle r = 2 cos 0; tangent r = 2 sec 0
(iv) Cusp at O, symmetry about OCA, AR is an

asymptote.

The former contains a loop, the latter a dimple.
(iv) (a) The loop of the limacon is just inside the

circle and the remainder just outside the
circle.

(b) The limacon approximates a circle, centre
the point with polar co-ordinates (2, 0).

240

Therefore

By the circle theorems it follows that C has the
equation r = 2 cos 9.



(v) (a) By definition Q is the mid-point of PP' and
so is the centre of the circle C' which has
radius k = 2. If QQ' is a diameter of C,
then Q' is the only point on C which is a
distance 2 from Q.
Putting these together shows that C and C'
touch at Q'.

(b) Call the centre of C, M.
By circle theorems
ZOMQ' = 2 x ZOQQ7 = 29.

=> Arc OQ on C = 29 = Arc P'Q' on C'.
7 (ii) A continuous closed curve; six cusps;

maximum distance 6, minimum distance 4.
(i i i) Curve has (k + 1) cusps. Bounded by circles of

radii (k+ 1), (k- 1).
(v) Radius I

8 (i)

(v) concave for 0 < a < 1.6; circle for a = 2;
concave (with dimples) for a > 2.5.

P at D as above or at D;, where SD; = d and
TD; = 2d

(v) Symmetrical in the perpendicular bisector of
ST

(vi) If k > 1, there are values of 9 such that the
expression (1 — k2 sin2 9) < 0, and so

12 (i)

That P; lies on curve follows from
k= -(2acos9 - k).

( i i i) k = 2a

(iv) 9 = —, —: points with horizontal tangents;

9 = n is at the cusp.
13 (ii) (x2+/)/ = aV

( i i i) Calculator plots 0 ̂  9 < 2ny whereas the
sketch is similar to 0 ̂  9 < n. Using lines
y = ±a by hand would give the full curve.
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11 (i) Ellipse

sin T cos T

(iv) (1, !),(-!,-1); (-2, 2), (2,-2)
(v) The axes are perpendicular. The major axis is

y — — x and the minor axis is y — x.

(vi) 45° anticlockwise

this is the

standard form of the equation of an ellipse; S is
an ellipse; a curve and its image are congruent
under rotation.

and

10 (i) Perpendicular bisector of ST

as required.



14 (i) (2acos Tsin T, 2acos T)

(v) The points of inflection

15 (i) b+ a and b — a

That P' lies on curve follows from

(iv) a = b

Independent of k!)
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Index

co-ordinates
cartesian 20
polar 20
principal polar 21

cos"1x 7
Cotes, Roger 45
crossover points 149, 155
cubic approximation 70
curves

Archimedes' spiral 26
astroid 30, 165, 183, 214
cardioid 27, 181,214
catenary 123, 127
circle 23, 61, 186, 213
cissoid of Diodes 146, 204, 214
conchoid of Nicomedes 210,214
conic 184
cycloid 176,213
deltoid 215
eight curve 148,215
electric motor 167
ellipse 184, 187, 213
epicycloid 152,213
epitrochoid 155
equiangular spiral 20, 29
family of 160
folium of Descartes 146,167,

182,215
glossary of 213
harmonograph 180
hyperbola 26, 184, 188, 213
hypocycloid 205,214
Kappa curve 209, 215
lemniscate 200, 203, 215
lemniscate of Bernoulli 29, 206
limacon 25, 142, 150, 204, 214
limacon of Pascal 208
Lissajous curves 179, 214
Maltese cross 148, 168, 215
nephroid 214
parabola 184, 187, 213
piriform 211,215
rectangular hyperbola 135, 189,

213
rhodonea 27
right strophoid 146, 214
sinusoidal spiral 200
spiral 215
superellipse 171
trefoil 167
trident 215
trisectrix 202

trisectrix of Maclaurin 147,214
witch of Agnesi 146, 209, 215

cusp 151
cyclic interchange 88
cycloid 176,213

curtate 213
prolate 213

deltoid 215
de Moivre, Abraham 41
de Moivre's theorem 40, 42, 46
De Morgan, Augustus 1
determinant

expansion by alien cofactors 88,
92

of 2 x 2 matrix 84
of 3 x 3 matrix 85
of product 88
properties of 87, 92, 96

diagonal form of matrix 113
differential equation 45, 103, 112
differentiation

chain rule 1
of inverse trigonometric

functions 6
of trigonometric functions 2
product rule 1
quotient rule 1

dimensions 13
dimple 151
director circle 197
directrix 185
division in Argand diagram 38
domain of

hyperbolic functions and inverses
130, 131,231,232

inverse trigonometric functions
7, 8,9, 19,217

eccentricity 185
economics 121
eigenvalue 106
eigenvector 106
eight curve 148,215
electric motor 167
ellipse 184, 187, 213
elliptic trammel 197
epicycloid 152,213
equal aspect 149
equiangular spiral 20, 29
Euler, Leonhard 45
Euler's formula for n 80 243

adjoint 93
adjugate 93
alien cofactor 88, 92
Apollonius of Perga 184
arccosine 7
Archimedes, spiral of 26
arcsine 6
arctangent 8
area of sector 27
area scale factor 84
Argand diagram 32

division in 38
locus of points in 36
multiplication in 37

argument 33
arg z 33
associative 84
astroid 30, 165, 183, 214
asymptote 158

Bernoulli, John 123, 127
Bernoulli's lemniscate 29, 206
Bolt, Brian 66

cardioid 27, 181,214
cartesian equation 139
catenary 123, 127
Cauchy, Augustin Louis 86, 117
Cayley, Arthur 86, 117
Cayley-Hamilton theorem 115
centroid 65
characteristic equation 107,114
characteristic polynomial 107
circle 23, 61, 186, 213
cissoid of Diodes 146, 204, 214
complementary function 103
complex numbers

as exponent 46
as roots 51, 54, 56
converting between forms 34
dividing 38
geometrical uses 60
modulus-argument form 34
multiplying 37
polar form 32

complex roots of unity 51
compound angle formulae 4
conchoid of Nicomedes 210,214
conic 184, 190, 212
conic sections 186
converting between forms 34, 142,

144



244

even function 124, 128, 148, 231,
234

expanding determinant by a
column 85

exponential function 46, 69

factor theorem 89
family of curves 160
focal chord 191
focus 185
folium of Descartes 146, 167, 182,

215
four-bar linkage 66
Frobenius, Georg 117
function

arccosine 7
arcosh 130
arcsine 6
arctangent 8
arsinh 131
artanh 131
circular 123
cosech 128
cosh 124
coth 128
even 124, 128, 148,231,234
exponential 46,69
hyperbolic 123, 128
inverse hyperbolic 130
inverse trigonometric 6, 19
odd 124, 128, 148,231,234
periodic 46, 148, 234
sech 128
sinh 124
tanh 128

Galilei, Galileo 184
Galois, Evariste 109
Gauss, Carl Friedrich 51
general solution 10
Girard, Albert 51
graph of

hyperbolic functions 124, 128
inverse hyperbolic functions

130, 131
inverse trigonometric functions

7,8,9
Gregory, James 79
Gregory's series 80

Hadamard, Jacques 32
Hamilton, William Rowan 117
hanging cable 126
Hardy, Thomas 138
harmonograph 180
Hein, Piet 172
hyperbola 26, 184, 188, 213

hyperbolic function 123, 128
hypocycloid 205,214

inconsistent equations 98
integration

by inspection 1
by parts 1
by substitution 1
of trigonometric functions 2, 4
using arcsine 11, 19
using arctangent 13, 19
using identities 3
using inverse hyperbolic

functions 133
when numerator is derivative of

denominator 1
invariant points and lines 104

inverse
left-inverse 93
of a matrix 84
right-inverse 94
trigonometric functions 6, 19

isometric transformations 98

Kappa curve 209, 215
Kepler, Johannes 184

left-handed set 89
Leibniz, Gottfried Wilhelm 80
Leibniz's series 80
lemniscate 200, 203, 215
lemniscate of Bernoulli 29, 206
limacon 25, 142, 150, 204, 214
limacon of Pascal 208
linear approximation 70
Lissajous curves 179, 214
locus 138
locus in Argand diagram 36
loop 151

Machin's formula 80
Maclaurin

approximation 71
expansion 71
series 74, 83, 137

Maclaurin, Colin 79
Maclaurin series 74, 83, 137

(1 + x)" 75,83
arctan x 77, 83
artanh x 135, 137
cosh x 129, 137
cosx 75,83
e* 74, 83
l n ( l + x ) 76,83
sinhx 129, 137
smx 75,83

mains electricity 4

Maltese cross 148, 168, 215
Markov process 112
matrix

and simultaneous equations 98
determinant of 84
identity 84
inverse of 84, 93
multiplication is associative 84
non-negative 121
non-singular 84
orthogonal 98
reduce to diagonal form 113,

120
similar 120
singular 94
skew-symmetric 111
stochastic 112
trace of 110,120
transition 112
transpose of 94
zero 99, 101

maximum 173
mean value 4
median 65
Mercator, Nicolaus 76
minimum 173
minor 85
modulus-argument form of

complex number 34
multiplication in Argand diagram 37

Napoleon's theorem 66
nephroid 214
Newton, Isaac 45, 80
NewtonRaphson method 79, 183
node 149, 155
non-negative matrix 121
non-singular matrix 84

odd function 124, 128, 148, 231,
234

orthogonal matrix 98
Osborn's rule 125

parabola 184, 187, 213
parallel curves 151
parameter 25
parametric equation 140
particular integral 103
pencil of planes 100
periodic function 46, 148, 234
piriform 211,215
Plato, Academy of 20
polar

co-ordinates 20
equation 23, 141
form of complex number 32



to rectangular co-ordinates 21,
34, 144

pole 20
polynomial approximation 69
power of a square matrix 113
principal

argument 33
polar co-ordinates 21

projectile trajectory 81

quadratic approximation 70
quantum mechanics 121

radial direction 48
range of

hyperbolic functions and
inverses 130, 131,231,232

inverse trigonometric functions
7, 8, 9, 19, 217

rectangular
hyperbola 135, 189, 213
to polar co-ordinates 21, 34, 143

recurrence relation 116
reduce to diagonal form 113, 120
Renyi, Alfred 69
rhodonea 27
right-handed set 89

right strophoid 146, 214
Roberts, Richard 66
Roberts' theorem 66
root mean square 4
row properties of determinant 96
rule of Sarrus 86

Sarrus, P.P. 86
sector, area of 27
Shanks, William 80
sheaf of planes 100
shear 90
similar

directly 61
matrices 120
opposite 62

sin"1 x 6
singular matrix 94
sinusoidal spiral 200
skew-symmetric matrix 111
spiral 215

Archimedes' 26
dilation 38
equiangular 20,29
sinusoidal 200

square grid 149
stochastic matrix 112

summation using complex numbers
49

sum to infinity 74
superellipse 171

tan lx 8
Taylor

approximation 79
polynomial 79

Taylor, Brook 79
trace of a matrix 110, 120
trajectory of a projectile 81
transformation by a matrix 199
transition matrix 112
transpose of a matrix 94
transverse direction 48
trefoil 167
trident 215
trisectrix 202
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